[1] ZHANG L, MA Y N, PAN X C, et al. A composite hydrogel of chitosan/heparin/poly(gamma-glutamic acid) loaded with superoxide dismutase for wound healing[J]. Carbohydr Polym, 2018, 180: 168-174. [2] MAHINROOSTA M, FARSANGI Z J, ALLAHVERDI A, et al. Hydrogels as intelligent materials: a brief review of synthesis, properties and applications[J]. Mater Today Chem, 2018, 8: 42-55. [3] CARAYON I, GAUBERT A, MOUSLI Y, et al. Electro-responsive hydrogels: macromolecular and supramolecular approaches in the biomedical field[J]. Biomater Sci, 2020, 8(20): 5589-5600. [4] ECHEVERRIA C, FERNANDES S N, GODINHO M H, et al. Functional stimuli-responsive gels: hydrogels and microgels[J]. Gels, 2018, 4(2): 1-37. [5] AHMED E M. Hydrogel: preparation, characterization, and applications: a review[J]. J Adv Res, 2015, 6(2): 105-121. [6] DONG Y, ZHUANG H, HAO Y, et al. Poly(N-isopropyl-acrylamide)/poly(gamma-glutamic acid) thermo-sensitive hydrogels loaded with superoxide dismutase for wound dressing application[J]. Int J Nanomed, 2020, 15: 1939-1950. [7] KAPLAN J A, BARTHELEMY P, GRINSTAFF M W. Self-assembled nanofiber hydrogels for mechanoresponsive therapeutic anti-TNFα antibody delivery[J]. Chem Commun, 2016, 52(34): 5860-5863. [8] ZHANG M, WEISS R G. Mechano-responsive, thermo-reversible, luminescent organogels derived from a long-chained, naturally occurring fatty acid[J]. Chemistry, 2016, 22(24): 8262-8272. [9] BAILLET J, GAUBERT A, BASSANI D M, et al. Supramolecular gels derived from nucleoside based bolaamphiphiles as a light-sensitive soft material[J]. Chem Commun, 2020, 56(66): 9569-9569. [10] TEMPESTI P, BONINI M, RIDI F, et al. Magnetic polystyrene nanocomposites for the separation of oil and water[J]. J Mater Chem A, 2014, 2(6): 1980-1984. [11] ROGER S, SANG Y Y C, BEE A, et al. Structural and multi-scale rheophysical investigation of diphasic magneto-sensitive materials based on biopolymers[J]. Eur Phys J E Soft Matter Biol Phys, 2015, 38(8): 88-101. [12] ALI I, LI X D, CHEN X Q, et al. A review of electro-stimulated gels and their applications: present state and future perspectives[J]. Mater Sci Eng C-Mater, 2019, 103: 109852. [13] PAREEK A, MAHESHWARI S, CHERLO S, et al. Modeling drug release through stimuli responsive polymer hydrogels[J]. Int J Pharm, 2017, 532(1): 502-510. [14] RAGHAVENDRA G M, VARAPRASAD K, JAYARAMUDU T, et al. Nanotechnology applications for tissue engineering[M]. Biomaterials, 2015, 4: 21-44. [15] LIU Q H, WANG H, LI G T, et al. A photocleavable low molecular weight hydrogel for light-triggered drug delivery[J]. Chinese Chem Lett, 2019, 30(2): 485-488. [16] HIGHLEY C B, KIM M, LEE D, et al. Near-infrared light triggered release of molecules from supramolecular hydrogel-nanorod composites[J]. Nanomedicine-UK, 2016, 11(12): 1579-1590. [17] KARAGIORGIS S, TSAMIS A, VOUTOURI C, et al. Engineered magnetoactive collagen hydrogels with tunable and predictable mechanical response[J]. Mater Sci Eng C Mater Biol Appl, 2020, 114: 111089. [18] KLOUDA L. Thermoresponsive hydrogels in biomedical applications: a seven-year update[J]. Eur J Pharm Biopharm, 2015, 97: 338-349. [19] KASINSKI A, ZIELINSKA-PISKLAK M, OLEDZKA E, et al. Smart hydrogels-synthetic stimuli-responsive antitumor drug release systems[J]. Int J Nanomed, 2020, 15: 4541-4572. [20] MATANOVIC MR, KRISTL J, GRABNAR P A, et al. Thermoresponsive polymers: insights into decisive hydrogel characteristics, mechanisms of gelation, and promising biomedical applications[J]. Int J Pharm, 2014, 472(1/2): 262-275. [21] FARJADIAN F, REZAEIFARD S, NAEIMI M, et al. Temperature and pH-responsive nano-hydrogel drug delivery system based on lysine-modified poly(vinylcaprolactam)[J]. Int J Nanomed, 2019, 14: 6901-6915. [22] LIU H, CHENG Y, CHEN J, et al. Component effect of stem cell-loaded thermosensitive polypeptide hydrogels on cartilage repair[J]. Acta Biomater, 2018, 73: 103-111. [23] WEI X W, GONG C Y, GOU M Y, et al. Biodegradable poly(epsilon-caprolactone)-poly(ethylene glycol) copolymers as drug delivery system[J]. Int J Pharmaceut, 2009, 381(1): 1-18. [24] ZHANG G, ZHANG L W, RAO H J, et al. Role of molecular chirality and solvents in directing the self-assembly of peptide into an ultra-pH-sensitive hydrogel[J]. J Colloid Interface Sci, 2020, 577: 388-396. [25] RAKHSHAEI R, NAMAZI H, HAMISHEHKAR H, et al. Graphene quantum dot cross-linked carboxymethyl cellulose nanocomposite hydrogel for pH-sensitive oral anticancer drug delivery with potential bioimaging properties[J]. Int J Biol Macromol, 2020, 150: 1121-1129. [26] HU X C, NIAN G D, LIANG X Y, et al. Adhesive tough magnetic hydrogels with high Fe3O4 content[J]. ACS Appl Mater Interfaces, 2019, 11(10): 10292-10300. [27] CAI Z X, ZHANG B, JIANG L Y, et al. Intelligent-responsive hydrogels-based controlled drug release systems an its applications[J]. Prog Chem, 2019, 31(12): 1653-1668. [28] WERZER O, TUMPHART S, KEIMEL R, et al. Drug release from thin films encapsulated by a temperature-responsive hydrogel[J]. Soft Matter, 2019, 15(8): 1853-1859. [29] TANG J D, QIAO Y C, CHU Y H, et al. Magnetic double-network hydrogels for tissue hyperthermia and drug release[J]. J Mater Chem B, 2019, 7(8): 1311-1321. [30] ZHANG L N, ZUO X Q, LI S J, et al. Synergistic therapy of magnetism-responsive hydrogel for soft tissue injuries[J]. Bioact Mater, 2019,4: 160-166. [31] YANG X, LI P, TANG W, et al. A facile injectable carbon dot/oxidative polysaccharide hydrogel with potent self-healing and high antibacterial activity[J]. Carbohydr Polym, 2021, 251: 117040. [32] GANDHI S, ABRAMOV A Y. Mechanism of oxidative stress in neurodegeneration[J]. Oxid Med Cell Longevity, 2012, 2012: 428010. [33] GAO Z, GOLLAND B, TRONCI G, et al. A redox-responsive hyaluronic acid-based hydrogel for chronic wound management[J]. J Mater Chem B, 2019, 7(47): 7494-7501. [34] ZHENG Y, WANG X, JI S, et al. Mepenzolate bromide promotes diabetic wound healing by modulating inflammation and oxidative stress[J]. Am J Transl Res, 2016, 8(6): 2738-2747. [35] LIN X X, MA Q Q, SU J L, et al. Dual-responsive alginate hydrogels for controlled release of therapeutics[J]. Molecules, 2019, 24(11): 2089-2102. [36] ZHU Y, WANG L Y, LI Y P, et al. Injectable pH and redox dual responsive hydrogels based on self-assembled peptides for anti-tumor drug delivery[J]. Biomater Sci, 2020, 8(19): 5415-5426. [37] CHATTERJEE S, HUI P C L, WAT E, et al. Drug delivery system of dual-responsive pf127 hydrogel with polysaccharide-based nano-conjugate for textile-based transdermal therapy[J]. Carbohydr Polym, 2020, 236: 116074. [38] OROOJALIAN F, BABAEI M, TAGHDISI S M, et al. Encapsulation of thermo-responsive gel in pH-sensitive polymersomes as dual-responsive smart carriers for controlled release of doxorubicin[J]. J Controlled Release, 2018, 288: 45-61. [39] LIU J, CHEN Z Q, WANG J, et al. Encapsulation of curcumin nanoparticles with MMP9-responsive and thermos-sensitive hydrogel improves diabetic wound healing[J]. ACS Appl Mater Interfaces, 2018, 10(19): 16315-16326. [40] ZHU Y, WANG L, LI Y, et al. Injectable pH and redox dual responsive hydrogels based on self-assembled peptides for anti-tumor drug delivery[J]. Biomater Sci, 2020, 8(19): 5415-5426. [41] ZHANG Y, DOSTA P, CONDE J, et al. Prolonged local in vivo delivery of stimuli-responsive nanogels that rapidly release doxorubicin in triple-negative breast cancer cells[J]. Adv Healthcare Mater, 2020, 9(4): 1901101. [42] GANGRADE A, MANDAL B B. Injectable carbon nanotube impregnated silk based multifunctional hydrogel for localized targeted and on-demand anticancer drug delivery[J]. ACS Biomater Sci Eng, 2019, 5(5): 2365-2381. [43] WANG S, ZHENG H, ZHOU L, et al. Injectable redox and light responsive MnO2 hybrid hydrogel for simultaneous melanoma therapy and multidrug-resistant bacteria-infected wound healing[J]. Biomaterials, 2020, 260: 120314. [44] TONG R, CHEN G, TIAN J, et al. Highly stretchable, strain-sensitive, and ionic-conductive cellulose-based hydrogels for wearable sensors[J]. Polymers, 2019, 11(12): 2067-2077. [45] ZIMINSKA M, WILSON J J, MCERLEAN E, et al. Synthesis and evaluation of a thermoresponsive degradable chitosan-grafted PNIPAAm hydrogel as a “smart” gene delivery system[J]. Materials, 2020, 13(11): 2530-2551. [46] SUN T, ZHU C, XU J. Multiple stimuli-responsive selenium-functionalized biodegradable starch-based hydrogels[J]. Soft Matter, 2018, 14(6): 921-926. [47] YUAN P, YANG T, LIU T, et al. Nanocomposite hydrogel with NIR/magnet/enzyme multiple responsiveness to accurately manipulate local drugs for on-demand tumor therapy[J]. Biomaterials, 2020, 262: 120357. [48] GJOREVSKI N, SACHS N, MANFRIN A, et al. Designer matrices for intestinal stem cell and organoid culture[J]. Nature, 2016, 539(7630): 560-564. [49] PEDERSEN S L, HUYNH T H, POSCHKO P, et al. Remotely triggered liquefaction of hydrogel materials[J]. ACS Nano, 2020, 14(7): 9145-9155. [50] MONKS P, WYCHOWANIEC J K, MCKIERNAN E, et al. Spatiotemporally resolved heat dissipation in 3D patterned magnetically responsive hydrogels[J]. Small, 2020, e2004452. [51] LIM D G, KANG E, JEONG S H. pH-dependent nanodiamonds enhance the mechanical properties of 3D-printed hyaluronic acid nanocomposite hydrogels[J]. J Nanobiotechnol, 2020, 18(1): 88. [52] PERCIVAL S L, MCCARTY S, HUNT J A, et al. The effects of pH on wound healing, biofilms, and antimicrobial efficacy[J]. Wound Repair Regen, 2014, 22(2): 174-186. [53] BAPTISTA L S, KRONEMBERGER G S, SILVA K R, et al. Spheroids of stem cells as endochondral templates for improved bone engineering [J]. Front Biosci-Landmrk, 2018, 23:1969-1986. [54] WAN Z Q, ZHANG P, LIU Y S, et al. Four-dimensional bioprinting: current developments and applications in bone tissue engineering[J]. Acta Biomater, 2020, 101: 26-42. [55] HENDRIKSON W J, ROUWKEMA J, CLEMENTI F, et al. Towards 4D printed scaffolds for tissue engineering: exploiting 3D shape memory polymers to deliver time-controlled stimulus on cultured cells[J]. Biofabrication, 2017, 9(3): 031001. [56] COSTA J B, SILVA-CORREIA J, OLIVEIRA J M, et al. Fast setting silk fibroin bioink for bioprinting of patient-specific memory-shape implants[J]. Adv Healthcare Mater, 2017, 6(22): 1701021. |