Chinese Journal of Applied Chemistry ›› 2021, Vol. 38 ›› Issue (7): 754-766.DOI: 10.19894/j.issn.1000-0518.200318
• Review • Previous Articles Next Articles
HE Quan-Bao, HU Zheng, GE Ming*
Received:
2020-10-26
Accepted:
2021-02-05
Published:
2021-07-01
Online:
2021-09-01
About author:
Natural Science Foundation of Hebei Province(No.B2019209373)
CLC Number:
HE Quan-Bao, HU Zheng, GE Ming. Research Progress on Photo-degradation of Antibiotics in Water by BiOX(X=Cl,Br,I) Composite Photocatalytic Materials[J]. Chinese Journal of Applied Chemistry, 2021, 38(7): 754-766.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.200318
[1] 罗玉, 黄斌, 金玉, 等. 污水中抗生素的处理方法研究进展[J]. 化工进展, 2014, 33(9): 2471-2477. LUO Y, HUANG B, JIN Y, et al. Research progress in the degradation of antibiotics wastewater treatment[J]. Chem Ind Eng Prog, 2014, 33(9): 2471-2477 [2] 张国栋, 董文平, 刘晓晖, 等. 我国水环境中抗生素赋存、归趋及风险评估研究进展[J]. 环境化学, 2018, 37(7): 1491-1500. ZHANG G D, DONG W P, LIU X H, et al. Occurrence, fate and risk assessment of antibiotics in water environment of China[J]. Environ Chem, 2018, 37(7): 1491-1500. [3] ZHANG Q Q, YING G G, PAN C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environ Sci Technol, 2015, 49(11): 6772-6782. [4] LI D, SHI W. Recent developments in visible-light photocatalytic degradation of antibiotics[J]. Chinese J Catal, 2016, 37(6): 792-799. [5] 王燕琴, 瞿梦, 冯红武, 等. 卤氧化铋光催化剂的研究进展[J]. 化工进展, 2014(3): 660-667. WANG Y Q, QU M, FENG H W, et al. Research progress in bismuth oxyhalide compouds photocatalysts[J]. Chem Ind Eng Prog, 2014(3): 660-667. [6] SHARMA K, DUTTA V, SHARMA S, et al. Recent advances in enhanced photocatalytic activity of bismuth oxyhalides for efficient photocatalysis of organic pollutants in water: a review[J]. J Ind Eng Chem, 2019, 78: 1-20. [7] LYU J, HU Z, LI Z, et al. Removal of tetracycline by BiOBr microspheres with oxygen vacancies: combination of adsorption and photocatalysis[J]. J Phys Chem Solids, 2019, 129: 61-70. [8] YU H, SHI R, ZHAO Y, et al. Smart utilization of carbon dots in semiconductor photocatalysis[J]. Adv Mater, 2016, 28(43): 9454-9477. [9] LI M, LIU Y, ZENG G, et al. Graphene and graphene-based nanocomposites used for antibiotics removal in water treatment: a review[J]. Chemosphere, 2019, 226: 360-380. [10] DONG S, PI Y, LI Q, et al. Solar photocatalytic degradation of sulfanilamide by BiOCl/reduced graphene oxide nanocomposites: mechanism and degradation pathways[J]. J Alloys Compd, 2016, 663: 1-9. [11] ZHANG J, WANG Z, FAN M, et al. Ultra-light and compressible 3D BiOCl/ RGO aerogel with enriched synergistic effect of adsorption and photocatalytic degradation of oxytetracycline[J]. J Mater Res Technol, 2019, 8(5): 4577-4587. [12] MOU Z, ZHANG H, LIU Z, et al. Ultrathin BiOCl/nitrogen-doped graphene quantum dots composites with strong adsorption and effective photocatalytic activity for the degradation of antibiotic ciprofloxacin[J]. Appl Surf Sci, 2019, 496: 143655. [13] ZHANG J, GUO Y, XIONG Y, et al. Environment-friendly 0D/2D Ag/CDots/BiOCl heterojunction with enhanced photocatalytic tetracycline degradation and mechanism insight[J]. J Photochem Photobiol A, 2018, 356: 411-417. [14] LIANG Z, YANG J, ZHOU C, et al. Carbon quantum dots modified BiOBr microspheres with enhanced visible light photocatalytic performance[J]. Inorg Chem Commun, 2018, 90: 97-100. [15] DI J, XIA J, JI M, et al. Nitrogen-doped carbon quantum Dots/BiOBr ultrathin nanosheets: in situ strong coupling and improved molecular oxygen activation ability under visible light irradiation[J]. ACS Sustainable Chem Eng, 2016, 4(1): 136-146. [16] 郑乐媚, 关亦玮, 文定, 等. BiOBr/GO复合纳米光催化剂的制备及可见光下降解环丙沙星废水[J]. 环境化学, 2020, 39(8): 2137-2146. ZHENG L M, GUAN Y W, WEN D, et al.Preparation of BiOBr /GO composition nanocatalysts and application of degradation of ciprofloxacin wastewater in visible light[J]. Environ Chem, 2020, 39(8): 2137-2146. [17] NIU J, DAI P, WANG K, et al. Enhanced visible-light photocatalytic activity of BiOI-MWCNT composites synthesised via rapid and facile microwave hydrothermal method[J]. Mater Technol, 2019, 34: 506-514. [18] MAIMAITIZI H, ABULIZI A, KADEER K, et al. In situ synthesis of Pt and N co-doped hollow hierarchical BiOCl microsphere as an efficient photocatalyst for organic pollutant degradation and photocatalytic CO2 reduction[J]. Appl Surf Sci, 2020, 502: 144083. [19] WU S S, SU Y M, ZHU Y, et al. In-situ growing Bi/BiOCl microspheres on Ti3C2 nanosheets for upgrading visible-light-driven photocatalytic activity[J]. Appl Surf Sci, 2020, 502: 146339. [20] GAO Z, YAO B, YANG F, et al. Preparation of BiOBr-Bi heterojunction composites with enhanced photocatalytic properties on BiOBr surface by in-situ reduction[J]. Mater Sci Semicond Process, 2020, 108: 104882. [21] 葛明, 李振路. 基于银系半导体材料的全固态Z型光催化体系[J]. 化学进展, 2017, 29(8): 846-858. GE M, LI Z L. All-solid-state Z-scheme photocatalytic systems based on silver-containing semiconductor materials[J]. Prog Chem, 2017, 29(8): 846-858. [22] ZHOUP, YU J, JARONIEC M. All-solid-state Z-scheme photocatalytic systems[J]. Adv Mater, 2014, 26(29): 4920-4935. [23] MA X, MA Z, LIAO T, et al. Preparation of BiVO4/BiOCl heterojunction photocatalyst by in-situ transformation method for norfloxacin photocatalytic degradation[J]. J Alloys Compd, 2017, 702: 68-74. [24] LIANG Z, ZHOU C, YANG J, et al. Visible light responsive Bi2WO6/BiOCl heterojunction with enhanced photocatalytic activity for degradation of tetracycline and rohdamine B[J]. Inorg Chem Commun, 2018, 93: 136-139. [25] LI S, CHEN J, LIU Y, et al. In situ anion exchange strategy to construct flower-like BiOCl/BiOCOOH p-n heterojunctions for efficiently photocatalytic removal of aqueous toxic pollutants under solar irradiation[J]. J Alloys Compd, 2019, 781: 582-588. [26] GUPTA G, KANSAL S K. Novel 3-D flower like Bi3O4Cl/BiOCl p-n heterojunction nanocomposite for the degradation of levofloxacin drug in aqueous phase[J]. Process Saf Environ Prot, 2019, 128: 342-352. [27] WANG H X, LIAO B, LU T, et al.Enhanced visible-light photocatalytic degradation of tetracycline by a novel hollow BiOCl@CeO2 heterostructured microspheres: structural characterization and reaction mechanism[J]. J Hazard Mater, 2020, 385: 121552. [28] ZHOU F, YAN C, LIANG T, et al. Photocatalytic degradation of Orange G using sepiolite-TiO2 nanocomposites: optimization of physicochemical parameters and kinetics studies[J]. Chem Eng Sci, 2018, 183: 231-239. [29] HU X, SUN Z, SONG J, et al. Synthesis of novel ternary heterogeneous BiOCl/TiO2/sepiolite composite with enhanced visible-light-induced photocatalytic activity towards tetracycline[J]. J Colloid Interface Sci, 2019, 533: 238-250. [30] PRIYA B, RAIZADA P, SINGH N, et al. Adsorptional photocatalytic mineralization of oxytetracycline and ampicillin antibiotics using Bi2O3/BiOCl supported on graphene sand composite and chitosan[J]. J Colloid Interface Sci, 2016, 479: 271-283. [31] REN X, WU K, QIN Z, et al. The construction of type II heterojunction of Bi2WO6/BiOBr photocatalyst with improved photocatalytic performance[J]. J Alloys Compd, 2019, 788: 102-109. [32] RASHID J, ABBAS A, CHANG L C, et al. Butterfly cluster like lamellar BiOBr/TiO2 nanocomposite for enhanced sunlight photocatalytic mineralization of aqueous ciprofloxacin[J]. Sci Total Environ, 2019, 665: 668-677. [33] FU S, YUAN W, LIU X, et al. A novel 0D/2D WS2/BiOBr heterostructure with rich oxygen vacancies for enhanced broad-spectrum photocatalytic performance[J]. J Colloid Interface Sci, 2020, 569: 150-163. [34] GUO C, GAO S, LV J, et al. Assessing the photocatalytic transformation of norfloxacin by BiOBr/iron oxides hybrid photocatalyst: kinetics, intermediates, and influencing factors[J]. Appl Catal , B, 2017, 205: 68-77. [35] ZHU S R, QI Q, ZHAO W N, et al. Enhanced photocatalytic activity in hybrid composite combined BiOBr nanosheets and Bi2S3 nanoparticles[J]. J Phys Chem Solids, 2018, 121: 163-171. [36] SU X, WU D. Controllable synthesis of plate BiOBr loaded plate Bi2O2CO3 with exposed {001} facets for ciprofloxacin photo-degradation[J]. J Ind Eng Chem, 2018, 64: 256-265. [37] SU X, WU D. Facile construction of the phase junction of BiOBr and Bi4O5Br2 nanoplates for ciprofloxacin photodegradation[J]. Mater Sci Semicond Process, 2018, 80: 123-130. [38] SHI Z, ZHANG Y, SHEN X F, et al.Fabrication of g-C3N4/BiOBr heterojunctions on carbon fibers as weaveable photocatalyst for degrading tetracycline hydrochloride under visible light[J]. Chem Eng J, 2020, 386: 124010. [39] PI Y, LI X, XIA Q, et al. Adsorptive and photocatalytic removal of persistent organic pollutants (POPs) in water by metal-organic frameworks (MOFs)[J]. Chem Eng J, 2018, 337: 351-371. [40] HU Q, CHEN Y, LI M, et al. Construction of NH2-UiO-66/BiOBr composites with boosted photocatalytic activity for the removal of contaminants[J]. Colloids Surf A, 2019, 579: 123625. [41] CHEN Y, LIU Y, XIE X, et al. Synthesis flower-like BiVO4/BiOI core/shell heterostructure photocatalyst for tetracycline degradation under visible-light irradiation[J]. J Mater Sci: Mater Electron, 2019, 30: 9311-9321. [42] NIU J, ZHANG Z, DAI P, et al. Facile synthesis of γ-Fe2O3/BiOI microflowers with enhanced visible light photocatalytic activity[J]. Mater Des, 2018, 150: 29-39. [43] LI S, XUE B, WANG C, et al. Facile fabrication of flower-like BiOI/BiOCOOH p-n heterojunctions for highly efficient visible-light-driven photocatalytic removal of harmful antibiotics[J]. Nanomaterials, 2019, 9(11): 1571. [44] PARAMANIK L, REDDY K H, PARIDA K M. Stupendous photocatalytic activity of p-BiOI/n-PbTiO3 heterojunction: the significant role of oxygen vacancies and interface coupling[J]. J Phys Chem C, 2019, 123(35): 21593-21606. [45] WEN X J, NIU C G, ZHANG L, et al. An in depth mechanism insight of the degradation of multiple refractory pollutants via a novel SrTiO3/BiOI heterojunction photocatalysts[J]. J Catal, 2017, 356: 283-299. [46] ARUMUGAM M, LEE S J, BEGILDAYEVA T, et al. Enhanced photocatalytic activity at multidimensional interface of 1D-Bi2S3@2D-GO/3D-BiOI ternary nanocomposites for tetracycline degradation under visible-light[J]. J Hazard Mater, 2021, 404: 123868. [47] JIANG X, LAI S, XU W, et al. Novel ternary BiOI/g-C3N4/CeO2 catalysts for enhanced photocatalytic degradation of tetracycline under visible-light radiation via double charge transfer process[J]. J Alloys Compd, 2019, 809: 151804. [48] ZHANG Q, BAI J, LI G, et al. Synthesis and enhanced photocatalytic activity of AgI-BiOI/CNFs for tetracycline hydrochloride degradation under visible light irradiation[J]. J Solid State Chem, 2019, 270: 129-134. [49] WANG Q, LI Y, HUANG L, et al. Enhanced photocatalytic degradation and antibacterial performance by GO/CN/BiOI composites under LED light[J]. Appl Surf Sci, 2019, 497: 143753. [50] YAN M, HUA Y, ZHU F, et al. Fabrication of nitrogen doped graphene quantum dots-BiOI/MnNb2O6 p-n junction photocatalysts with enhanced visible light efficiency in photocatalytic degradation of antibiotics[J]. Appl Catal B, 2017, 202: 518-527. [51] DONGH, XIAO M, LI J, et al. Construction of H-TiO2/BiOCl heterojunction with improved photocatalytic activity under the visible and near-infrared light[J]. J Photochem Photobiol A, 2020, 392: 112369. [52] LI Q, GUAN Z, WU D, et al. Z-scheme BiOCl-Au-CdS heterostructure with enhanced sunlight-driven photocatalytic activity in degrading water dyes and antibiotics[J]. ACS Sustainable Chem Eng, 2017, 5(8): 6958-6968. [53] WANG S, YANG X, ZHANG X, et al. A plate-on-plate sandwiched Z-scheme heterojunction photocatalyst: BiOBr-Bi2MoO6 with enhanced photocatalytic performance[J]. Appl Surf Sci, 2017, 391: 194-201. [54] YU H, HUANG B, WANG H, et al. Facile construction of novel direct solid-state Z-scheme AgI/BiOBr photocatalysts for highly effective removal of ciprofloxacin under visible light exposure: mineralization efficiency and mechanisms[J]. J Colloid Interface Sci, 2018, 522: 82-94. [55] ZHOU K H, LIU Y, HAO J Y.One-pot hydrothermal synthesis of dual Z-scheme BiOBr/g-C3N4/Bi2WO6 and photocatalytic degradation of tetracycline under visible light[J]. Mater Lett, 2020, 281: 128463. [56] LYU J, LI Z, GE M. Novel Bi/BiOBr/AgBr composite microspheres: ion exchange synthesis and photocatalytic performance[J]. Solid State Sci, 2018, 80: 101-109. [57] LIU H, ZHOU H, LIU X, et al. Engineering design of hierarchical g-C3N4@Bi/BiOBr ternary heterojunction with Z-scheme system for efficient visible-light photocatalytic performance[J]. J Alloys Compd, 2019, 798: 741-749. [58] CHEN J, XIAO X, WANG Y, et al. Novel AgI/BiOBr/reduced graphene oxide Z-scheme photocatalytic system for efficient degradation of tetracycline[J]. J Alloys Compd, 2019, 800: 88-98. [59] ZHANG M, LAI C, LI B, et al. Rational design 2D/2D BiOBr/CDs/g-C3N4 Z-scheme heterojunction photocatalyst with carbon dots as solid-state electron mediators for enhanced visible and NIR photocatalytic activity: kinetics, intermediates, and mechanism insight[J]. J Catal, 2019, 369: 469-481. [60] CHEN M, DAI Y, GUO J, et al. Solvothermal synthesis of biochar@ZnFe2O4/BiOBr Z-scheme heterojunction for efficient photocatalytic ciprofloxacin degradation under visible light[J]. Appl Surf Sci, 2019, 493: 1361-1367. [61] LI H, LI J, AI Z, JIA F, et al. Oxygen vacancy-mediated photocatalysis of BiOCl: reactivity, selectivity, and perspectives[J]. Angew Chem Int Ed, 2018, 57(1):122-138. [62] DING J, DAI Z, QIN F, et al. Z-scheme BiO1-xBr/Bi2O2CO3 photocatalyst with rich oxygen vacancy as electron mediator for highly efficient degradation of antibiotics[J]. Appl Catal B, 2017, 205: 281-291. [63] YANG Y, ZENG Z, ZHANG C, et al. Construction of iodine vacancy-rich BiOI/Ag@AgI Z-scheme heterojunction photocatalysts for visible-light-driven tetracycline degradation: transformation pathways and mechanism insight[J]. Chem Eng J, 2018, 349: 808-821. [64] JIANG R S, YANG J S, LI S T, et al. Construction of PDDA functionalized black phosphorus nanosheets/BiOI Z-scheme photocatalyst with enhanced visible light photocatalytic activity[J]. J Colloid Interface Sci, 2020, 576: 34-46. |
[1] | Yi-Cheng ZHANG, Fei ZHA, Xiao-Hua TANG, Yue CHANG, Hai-Feng TIAN, Xiao-Jun GUO. Research Progress of Heterogeneous Catalytic Preparation of Organic Peroxides [J]. Chinese Journal of Applied Chemistry, 2023, 40(6): 769-788. |
[2] | Yi-Chen YU, Yu-Chen ZHANG, Yao-Yuan ZHANG, Qin WU, Da-Xin SHI, Kang-Cheng CHEN, Han-Sheng LI. Research Progress of Bulk Metal Oxides for Non-oxidative Propane Dehydrogenation [J]. Chinese Journal of Applied Chemistry, 2023, 40(6): 789-805. |
[3] | Fang-Xie SHEN, Xiang WAN, Wei-Chao WANG. Volatile Organic Compounds Degradation at Room Temperature on Mn-mullite YMn2O5 Catalyst [J]. Chinese Journal of Applied Chemistry, 2023, 40(6): 888-895. |
[4] | Bing LI, Jun-Hui LIU, Ya-Kun SONG, Xiang LI, Xu-Ming GUO, Jian XIONG. Recent Advances in Application of Metal-Organic Frameworks for Hydrogen Generation by Catalytic Hydrolysis of Ammonia Borane [J]. Chinese Journal of Applied Chemistry, 2023, 40(3): 329-340. |
[5] | Lu-Fei WANG, Meng-Meng ZHEN, Bo-Xiong SHEN. Research Progress of Controlling Lithium-Sulfur Batteries by Electrocatalysts under Lean Electrolyte Conditions [J]. Chinese Journal of Applied Chemistry, 2023, 40(2): 188-209. |
[6] | Rong CAO, Jie-Zhen XIA, Man-Hua LIAO, Lu-Chao ZHAO, Chen ZHAO, Qi WU. Theoretical Research Progress of Single Atom Catalysts in Electrochemical Synthesis of Ammonia [J]. Chinese Journal of Applied Chemistry, 2023, 40(1): 9-23. |
[7] | Dan ZHANG, Run-Mei SHANG, Zhen-Tao ZHAO, Jun-Hua LI, Jin-Juan XING. Selective Oxidation of Methanol to Dimethoxymethane over V/Ce⁃Al2O3 Catalysts [J]. Chinese Journal of Applied Chemistry, 2022, 39(9): 1429-1436. |
[8] | Xian WANG, Xiao-Long YANG, Rong-Peng MA, Chang-Peng LIU, Jun-Jie GE, Wei XING. Atomic Dispersion Ir‑N‑C Catalysts for Anode Anti‑poisoning Electrolysis in Fuel Cell [J]. Chinese Journal of Applied Chemistry, 2022, 39(8): 1202-1208. |
[9] | Ye LIU, Shao-Bo GUO, Yan-Li LIANG, Hong-Guang GE, Jian-Qi MA, Zhi-Feng LIU, Bo LIU. Preparation and Catalytic Performance of Core‑Shell CuFe2O4@NH2@Pt Nanocomposites [J]. Chinese Journal of Applied Chemistry, 2022, 39(8): 1237-1245. |
[10] | Sheng-Jie LIU, Yong-Jie YE, Yin-Yi LIU, Shu-Man LIN, Hao-Yuan XIE, Wen-Ting LIU, Wei-Qin XU. Preparation of Uniformly Loaded Cu3P Nanoparticles in Porous Carbon Based on Copper Foam and Their Photocatalytic Performance for Dye Degradation [J]. Chinese Journal of Applied Chemistry, 2022, 39(7): 1090-1097. |
[11] | Xiao-Li ZHANG, Yu-Mei PENG, Qing-Wei WANG, Li-Xia QIN, Xiao-Xia LIU, Shi-Zhao KANG, Xiang-Qing LI. Construction of Nano Ag Modified TiO2 Nanotube Array Substrate for Surface Enhanced Raman Scattering Detection and Degradation of Tetracycline Hydrochloride [J]. Chinese Journal of Applied Chemistry, 2022, 39(7): 1147-1156. |
[12] | Chao ZHANG. Research Prospect of Single Atom Catalysts Towards Electrocatalytic Reduction of Carbon Dioxide [J]. Chinese Journal of Applied Chemistry, 2022, 39(6): 871-887. |
[13] | Shi-Shuai LI, Jia-Qi LIU, Jia-Yi WANG, Jiang-Feng YANG. Research Progress on Synthesis of Hierarchical Beta Zeolites [J]. Chinese Journal of Applied Chemistry, 2022, 39(6): 912-926. |
[14] | Yan WANG, Shu-Cong ZHANG, Xing-Kun WANG, Zhi-Cheng LIU, Huan-Lei WANG, Ming-Hua HUANG. Research Progress on Transition Metal⁃Based Catalysts for Hydrogen Evolution Reaction via Seawater Electrolysis [J]. Chinese Journal of Applied Chemistry, 2022, 39(6): 927-940. |
[15] | Feng LI, Shi-Yu LU, Yu ZHANG, Li-Jun GUO, Xue ZHAI, Cui-Qin LI. Catalytic Properties of Silylated⁃Salicylaldimine Transition Metal Complexes Functionalized Nano⁃silica Catalysts in Ethylene Oligomerization [J]. Chinese Journal of Applied Chemistry, 2022, 39(6): 949-959. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||