[1] XU X Y, RAY R, GU Y L, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. J Am Chem Soc, 2004, 126(40): 12736-12737. [2] HU C, MU Y, LI M Y, et al. Recent advances in the synthesis and applications of carbon dots[J]. Acta Phys-Chim Sin, 2019, 35(6): 572-590. [3] ZHAO Q L, ZHANG Z L, HUANG B H, et al. Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite[J]. Chem Commun, 2008: 5116. [4] PENG J, GAO W, GUPTA B K, et al. Graphene quantum dots derived from carbon fibers[J]. Nano Lett, 2012, 12(2): 844-849. [5] 梁逵, 李兵红, 刘国标, 等. 煤基碳纳米材料的研究进展[J]. 电子元件与材料, 2005, 3: 66-68. LIANG K, LI B H, LIU G B, et al. Research progress of coal-based carbon nanomaterials[J]. Electron Compon Mater, 2005, 3: 66-68. [6] 杨明莉, 徐龙君, 鲜学福. 煤基炭素活性材料的研究进展[J]. 煤炭转化, 2003, 26(1): 26-31. YANG M L, XU L J, XIAN X F. Research progress of coal-based carbon active materials[J]. Coal Convers, 2003, 26(1): 26-31. [7] 王茂章, 李峰. 由煤或焦炭制备纳米碳质材料的新进展[J]. 新型炭材料, 2005, 20(1): 71-72. WANG M Z, LI F. New progress in preparing nano-carbonaceous materials from coal or coke[J]. New Carbon Mater, 2005, 20(1): 71-72. [8] 胡建宏, 王永刚, 程相林, 等. 萃取条件对制备煤系针状焦原料的影响[J]. 中国煤炭, 2015(3): 86-90. HU J H, WANG Y G, CHENG X L, et al. Effect of extraction conditions on the preparation of coal-based needle coke raw materials[J]. China Coal, 2015(3): 86-90. [9] YE R Q, XIANG C S, LIN J, et al. Coal as an abundant source of graphene quantum dots[J]. Nat Commun, 2013, 4(1): 2943. [10] HU S L, WEI Z J, CHANG Q, et al. A facile and green method towards coal-based fluorescent carbon dots with photocatalytic activity[J]. Appl Surf Sci, 2016, 378(15): 402-407. [11] LI M Y, YU C, HU C, et al. Solvothermal conversion of coal into nitrogen-doped carbon dots with singlet oxygen generation and high quantum yield[J]. Chem Eng J, 2017, 320: 570-575. [12] KOVALCHUK A, HUANG K W, XIANG C S, et al. Luminescent polymer composite films containing coal-derived graphene quantum dots[J]. ACS Appl Mater Interfaces, 2015, 7(47): 26063-26068. [13] KUMAR T S, RAGUPATHY S, PALANIVEL D, et al. Fluorescent carbon nano dots from lignite: unveiling the impeccable evidence for quantum confinement[J]. Phys Chem Chem Phys, 2016, 18(17): 12065-12073. [14] FENG X T, ZHANG Y. A simple and green synthesis of carbon quantum dots from coke for white light-emitting devices[J]. RSC Adv, 2019, 9: 33789-33793. [15] GENG B J, YANG D W, ZHENG F F, et al. Facile conversion of coal tar to orange fluorescent carbon quantum dots and their composite encapsulated by liposomes for bioimaging[J]. New J Chem, 2017, 41: 14444-14451. [16] SINGAMANENI S R, JOHAN V T, YE R, et al. Intrinsic and extrinsic defects in a family of coal-derived graphene quantum dots[J]. Appl Phys Lett, 2015, 107(21): 212402. [17] DONG Y Q, CHEN C Q, ZHENG X T, et al. One-step and high yield simultaneous preparation of single- and multi-layer graphene quantum dots from CX-72 carbon black[J]. J Mater Chem, 2012, 22(18): 8764-8766. [18] HU C, YU C, LI M Y, et al. Chemically tailoring coal to fluorescent carbon dots with tuned size and their capacity for Cu(II) detection[J]. Small, 2014, 10(23):4926-4933. [19] HU S L, MENG X , TIAN F , et al. Dual photoluminescence centers from inorganic-salt-functionalized carbon dots for ratiometric pH sensing[J]. J Mater Chem, 2017, 5(38): 9849-9853. [20] ZHANG B , MAIMAITI H , ZHANG D D , et al. Preparation of coal-based C-Dots/TiO2 and its visible-light photocatalytic characteristics for degradation of pulping black liquor[J]. J Photochem Photobiol A, 2017, 345: 54-62. [21] SUKHYUN K, KANG K K, KYUNGHWAN J, et al. Graphene oxide quantum dots derived from coal for bioimaging: facile and green approach[J]. Sci Rep, 2019, 9: 4101. [22] BOTTINI M, BALASUBRAMANIAN C, DAWSON M I, et al. Isolation and characterization of fluorescent nanoparticles from pristine and oxidized electric arc-produced single-walled carbon nanotubes[J]. J Phys Chem B, 2006, 110(2): 831-836. [23] TAO H, YANG K, MA Z, et al. In vivo NIR fluorescence imaging, biodistribution, and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite[J]. Small, 2012, 8(2):281-290. [24] CHEN W, LI F, WU C, et al. Optical properties of fluorescent zigzag graphene quantum dots derived from multi-walled carbon nanotubes[J]. Appl Phys Lett, 2014, 104(6): 063109. [25] LI Y, ZHAO Y, CHENG H, et al. Nitrogen-doped graphene quantum dots with oxygen-rich functional groups[J]. J Am Chem Soc, 2012, 134(1): 15-18. [26] HU C, YU C, LI M, et al. Nitrogen-doped carbon dots decorated on graphene: a novel all-carbon hybrid electrocatalyst for enhanced oxygen reduction reaction[J]. Chem Commun Royal Soc Chem, 2015, 51(16): 419-422. [27] PAN D Y, ZHANG J C, LI Z, et al. Observation of pH-, solvent-, spin-, and excitation-dependent blue photoluminescence from carbon nanoparticles[J]. Chem Commun, 2010, 46(21): 3681-3683. [28] LAI C W, HSIAO Y H, PENG Y K, et al. Facile synthesis of highly emissive carbon dots from pyrolysis of glycerol; gram scale production of carbon dots/SiO2 for cell imaging and drug release[J]. J Mater Chem, 2012, 22: 14403-14409. [29] LIN P Y, HSIEH C W, KUNG M L, et al. Substrate-free self-assembled SiOx-Core nanodots from alkylalkoxysilane as a multicolor photoluminescence source for intravital imaging[J]. Sci Res, 2013, 3: 1703-1707. [30] ZHU H, WANG X L, LI Y L, et al. Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties[J]. Chem Commun, 2009, 1(34): 5118-5120. [31] PAN L L, SUN S, ZHANG A D, et al. Truly fluorescent excitation-dependent carbon dots and their applications in multicolor cellular imaging and multidimensional sensing[J]. Adv Mater, 2015, 27(47): 7782-7787. [32] RAHY A, ZHOU C, ZHENG J, et al. Photoluminescent carbon nanoparticles produced by confined combustion of aromatic compounds[J]. Carbon, 2012, 50(3): 1298-1302. [33] SAHOO B N, KANDASUBRAMANIAN B. Photoluminescent carbon soot particles derived from controlled combustion of camphor for superhydrophobic applications[J]. RSC Adv, 2014, 4(22): 11331. [34] HSU P C, CHANG H T. Synthesis of high-quality carbon nanodots from hydrophilic compounds: role of functional groups[J]. Chem Commun, 2012, 48(33): 3984-3986. [35] WANG L, WANG Y L, XU T, et al. Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties[J]. Nat Commun, 2014, 5: 53-57. [36] ZHU S J, ZHAO X H, SONG Y B, et al. Beyond bottom-up carbon nanodots: citric-acid derived organic molecules[J]. Nano Today, 2015, 11(2): 128-132. [37] YAO S, HU Y F, LI G K.A One-step sonoelectrochemical preparation method of pure blue fluorescent carbon nanoparticles under a high intensity electric field[J]. Carbon, 2014, 66(66): 77-83. [38] ZHU X H, WANG H Y, JIAO Q F, et al. Preparation and characterization of the fluorescent carbon dots derived from the lithium-intercalated graphite used for cell imaging[J]. Part Syst Charact, 2014, 31(7): 771-777. [39] ZONG J, ZHU Y H, YANG X L, et al. Synthesis of photoluminescent carbogenic dots using mesoporous silica spheres as nanoreactors[J]. Chem Commun, 2010, 47(2): 764-766. [40] KWON W, RHEE S W. Facile synthesis of graphitic carbon quantum dots with size tunability and uniformity using reverse micelles[J]. Chem Commun, 2012, 48(43): 5256-5260. [41] SHEN J H, ZHU Y H, YANG X L, et al. Graphene quantum dots: emergent nanolights for bioimaging sensors, catalysis and photovoltaic devices[J]. Chem Commun, 2012, 48: 3686-3699. [42] ZHANG Y T, ZHANG K B, JIA K L, et al. Preparation of coal-based graphene quantum dots/α-Fe2O3 nanocomposites and their lithium-ion storage properties[J]. Fuel, 2019, 241(1): 646-652. [43] ZHANG Y T, LI K K, REN S Z, et al. Coal-derived graphene quantum dots produced by ultrasonic physical tailoring and their capacity for Cu(II) detection[J]. ACS Sust Chem Eng, 2019, 7(11): 9793-9799. [44] 胡超. 基于煤炭及其衍生物的荧光碳点制备与应用研究[D]. 大连:大连理工大学,2015. HU C. Study on the preparation and application of fluorescent carbon dots based on coal and its derivatives[D]. Dalian: Dalian University of Technology, 2015. [45] BAO L, ZHANG Z L, TIAN Z Q, et al. Electrochemical tuning of luminescent carbon nanodots: from preparation to luminsecence mechanism[J]. Adv Mater, 2011, 23: 5801-5806. [46] SASIKALA S P, HENRY L, YESILBAG TONGA G, et al. High yield synthesis of aspect ratio controlled graphenic materials from anthracite coal in supercritical fluids[J]. ACS Nano, 2016, 10(5): 5293-5303. [47] ZHANG D D, MAIMAITI H, AWATI A, et al. Synthesis and photocatalytic CO2 reduction performance of Cu2O/Coal-based carbon nanoparticle composites[J]. Chem Phys Lett, 2018, 700: 27-35. [48] SAIKIA M, HOWER J C, DAS T, et al. Feasibility study of preparation of carbon quantum dots from pennsylvania anthracite and kentucky bituminous coals[J]. Fuel, 2019, 243(1): 433-440. [49] DAS T, SAIKIA B K. Nanodiamonds produced from low-grade indian coals[J]. ACS Sust Chem Eng, 2017, 5: 9616-9624. [50] DONG Y Q, LIN J P, CHEN Y M, et al. Graphene quantum dots, graphene oxide, carbon quantum dots and graphite nanocrystals in coals[J]. Nanoscale, 2014, 6(13): 7410-7415. [51] MANOJ B, ASHLIN M R, GEORGE T C. Facile synthesis of preformed mixed nano-carbon structure from low rank coal[J]. Mater Sci Pol, 2018, 36(1): 14-20. [52] YEW Y T, LOO A H, SOFER Z, et al. Coke-derived graphene quantum dots as fluorescence nanoquencher in DNA detection[J]. Appl Mater Today, 2017, 7: 138-143. [53] KUNDU N, BHUNIA P, SARKAR S, et al. Highly fluorescent carbon dots from quinoline insoluble residues in coal tar[J]. Opt Mater, 2020, 100: 109638-109644. [54] MENG X, CHANG Q, HU S L, et al. Full-colour carbon dots: from energy-efficient synthesis to concentration-dependent photoluminescence properties[J]. Chem Commun, 2017, 53(21): 3074-3077. [55] ZHANG J J, LIU Q R, HE H, et al. Coal tar pitch as natural carbon quantum dots decorated on TiO2 for visible light photodegradation of rhodamine B[J]. Carbon, 2019, 152: 284-294. |