Chinese Journal of Applied Chemistry ›› 2022, Vol. 39 ›› Issue (11): 1735-1745.DOI: 10.19894/j.issn.1000-0518.220043
• Full Papers • Previous Articles Next Articles
Jian-Shuang ZHANG, Mei-Zhen GAO, Meng-Yao WANG, Qi SHI(), Jin-Xiang DONG
Received:
2022-02-21
Accepted:
2022-05-19
Published:
2022-11-01
Online:
2022-11-09
Contact:
Qi SHI
About author:
shiqi594@163.comSupported by:
CLC Number:
Jian-Shuang ZHANG, Mei-Zhen GAO, Meng-Yao WANG, Qi SHI, Jin-Xiang DONG. Zeolitic Imidazolate Framework ZIF‑71 for Adsorption and Separation of 2,3‑Butanediol/1,3‑Propanediol From Dilute Aqueous Solutions[J]. Chinese Journal of Applied Chemistry, 2022, 39(11): 1735-1745.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.220043
溶质分子 a Solute molecules | 分子尺寸 b Molecular size/nm3 | 偶极矩 Dipole moment/debye | 极化率 d Polarizability/nm3 |
---|---|---|---|
H2O 1,3?PDO | 0.39×0.30×0.33 0.81×0.50×0.54 0.76×0.57×0.59 | 1.85[ 2.50[ 1.95 c | 1.00×10-3 6.79×10-3 |
2,3?BDO | 8.60×10-3 |
Table 1 The molecular size, dipole moment and polarizability of solute molecules and water
溶质分子 a Solute molecules | 分子尺寸 b Molecular size/nm3 | 偶极矩 Dipole moment/debye | 极化率 d Polarizability/nm3 |
---|---|---|---|
H2O 1,3?PDO | 0.39×0.30×0.33 0.81×0.50×0.54 0.76×0.57×0.59 | 1.85[ 2.50[ 1.95 c | 1.00×10-3 6.79×10-3 |
2,3?BDO | 8.60×10-3 |
Fig.6 Static adsorption isotherms of (A) ZIF-71 and (B) Beta for 1,3-PDO and 2,3-BDO and (C) comparison of static adsorption performance; Competitive adsorption isotherms of (D) ZIF-71 and (E) Beta for 1,3-PDO/2,3-BDO and (F) comparison of competitive adsorption performance
Fig.10 (A) PXRD patterns of ZIF-71 during cyclic adsorption-desorption process and (B) adsorption/desorption capacity of 2,3-BDO in binary components 2,3-BDO/1,3-PDO (50 g/L, 50 g/L)
1 | KURIAN J V. A new polymer platform for the future-sorona® from corn derived 1,3-propanediol[J]. J Polym Environ, 2005, 13(2): 159-167. |
2 | ZHU Y T, WANG Y X, GAO H, et al. Current advances in microbial production of 1,3-propanediol[J]. Biofuel Bioprod Bior, 2021, 15(5): 1566-1583. |
3 | SUN Y Q, SHEN J T, YAN L, et al. Advances in bioconversion of glycerol to 1,3-propanediol: prospects and challenges[J]. Process Biochem, 2018, 71: 134-146. |
4 | 余晓兰, 汤建凯. 生物基聚对苯二甲酸丙二醇酯(PTT)纤维研究进展[J]. 精细与专用化学品, 2018, 26(2): 13-17. |
YU X L, TANG J K. Research progress of bio-based polytrimethylene terephthalate (PTT) fibers[J]. Fine Speci Chem, 2018, 26(2): 13-17. | |
5 | 周昱, 姚洁, 王公应. 1,3-丙二醇合成工艺研究进展[J]. 天然气化工, 2006, 31(1): 66-74. |
ZHOU Y, YAO J, WANG G Y. Research progress on the synthesis process of 1,3-propanediol[J]. Nat Gas Chem Ind, 2006, 31(1): 66-74. | |
6 | LARI G M, PASTORE G, HAUS M, et al. Environmental and economical perspectives of a glycerol biorefinery[J]. Energ Environ Sci, 2018, 11(5): 1012-1029. |
7 | LIU H J, ZHOU Y J, CAI Z Z, et al. 1,3-Propanediol fermentation with the by-product glycerol from biodiesel production by a genetic modified Klebsiella pneumoniae[J]. Adv Mater Res, 2012, 512-515: 323-329. |
8 | XU Y Z, GUO N N, ZHENG Z M, et al. Metabolism in 1,3-propanediol fed-batch fermentation by a D-lactate deficient mutant of klebsiella pneumoniae[J]. Biotechnol Bioeng, 2009, 104(5): 965-972. |
9 | PARK J M, RATHNASINGH C, SONG H. Metabolic engineering of Klebsiella pneumoniae based on in silico analysis and its pilot-scale application for 1,3-propanediol and 2,3-butanediol co-production[J]. J Ind Microbiol Biotechnol, 2017, 44(3): 431-441. |
10 | NAKAMURA C E, WHITED G M. Metabolic engineering for the microbial production of 1,3-propanediol[J]. Curr Opin Biotech, 2003, 14(5): 454-459. |
11 | AMRAOUI Y, NARISETTY V, COULON F, et al. Integrated fermentative production and downstream processing of 2,3-butanediol from sugarcane bagasse-derived xylose by mutant strain of enterobacter ludwigii[J]. ACS Sustain Chem Eng, 2021, 9(30): 10381-10391. |
12 | XIU Z L, ZENG A P. Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol[J]. Appl Microbiol Biotechnol, 2008, 78(6): 917-926. |
13 | CHEN T, CHEN Y Z, BAI P. Recovery of biomass-derived polyols by pressure swing adsorption: experiments, simulations, scale-up implementation and economic analysis[J]. Ind Eng Chem Res, 2020, 59(17): 8323-8334. |
14 | MITREA L, LEOPOLD L F, BOUARI C, et al. Separation and purification of biogenic 1,3-propanediol from fermented glycerol through flocculation and strong acidic ion-exchange resin[J]. Biomolecules, 2020, 10(12): 1601. |
15 | ZHANG C J, SHARMA S, WANG W, et al. A novel downstream process for highly pure 1,3-propanediol from an efficient fed-batch fermentation of raw glycerol by Clostridium pasteurianum[J]. Eng Life Sci, 2021, 21(6): 351-363. |
16 | BASTRZYK J, GRYTA M, KARAKULSKI K. Fouling of nanofiltration membranes used for separation of fermented glycerol solutions[J]. Chem Pap, 2014, 68(6): 757-765. |
17 | 周雯, 佟珊珊. 新型吸附材料分离和富集贵金属的研究进展[J]. 应用化学, 2021, 38(8): 897-910. |
ZHOU W, TONG S S. Research progress on novel adsorbent materials for separation and enrichment of noble metals[J]. Chinese J Appl Chem, 2021, 38(8): 897-910. | |
18 | TAN S J, LIU L, CHEW J W. Competitive and synergistic adsorption of mixtures of polar and nonpolar gases in carbonaceous nanopores[J]. Langmuir, 2021, 37(22): 6754-6764. |
19 | GUNZEL B, BERKE C H, ERNST S, et al. Adsorption von diolen aus fermentationsmedien an hydrophobe zeolithe[J]. Chem Ing Tech, 1990, 62(9): 748-750. |
20 | SCHLIEKER H, GUNZEL B, DECKWER W D. Einsatz der adsorption zur produktabtrennung bei der glycerinvergarung zu 1,3-propandiol[J]. Chem Ing Tech, 1992, 64(8): 727-728. |
21 | WANG Z, WU Z, TAN T W. Sorption equilibrium, mechanism and thermodynamics studies of 1,3-propanediol on beta zeolite from an aqueous solution[J]. Bioresour Technol, 2013, 145: 37-42. |
22 | 苏建英, 吴家鑫, 谭天伟. 疏水硅沸石吸附1,3-丙二醇的研究[J]. 化学工程, 2007, 35(5): 1-4. |
SU J Y, WU J X, TAN T W. Study on adsorption of 1,3-propanediol by hydrophobic silicalite[J]. Chem Eng,2007, 35(5): 1-4. | |
23 | LI G, LIU W, WANG X, et al. Separation of 2,3-butanediol using ZSM-5 zeolite modified with hydrophobic molecular spaces[J]. Chem Lett, 2014, 43(4): 411-413. |
24 | PIMENTEL B R, PARULKAR A, ZHOU E K, et al. Zeolitic imidazolate frameworks: next-generation materials for energy-efficient gas separations[J]. ChemSusChem, 2014, 7(12): 3202-3240. |
25 | CHEN F, LAI D, GUO L, et al. Deep desulfurization with record SO2 adsorption on the metal-organic frameworks[J]. J Am Chem Soc, 2021, 143(24): 9040-9047. |
26 | WANG Q, ASTRUC D. State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis[J]. Chem Rev, 2020, 120(2): 1438-1511. |
27 | 田龙, 豆维新, 杨玮婷, 等. 不同尺寸ZIF-8对U(VI)的吸附性能[J]. 应用化学, 2021, 38(1): 84-91. |
TIAN L, DOU W X, YANG W T, et al. Size effect of ZIF-8 on the adsorption of uranium[J]. Chinese J Appl Chem, 2021, 38(1): 84-91 | |
28 | JIN H, LI Y S, YANG W S. Adsorption of biomass-derived polyols onto metal-organic frameworks from aqueous solutions[J]. Ind Eng Chem Res, 2018, 57(35): 11963-11969. |
29 | LI J R, KUPPLER R J, ZHOU H C. Selective gas adsorption and separation in metal-organic frameworks[J]. Chem Soc Rev, 2009, 38(5): 1477-1504. |
30 | 徐如人, 庞文琴, 于吉红, 等. 分子筛与多孔材料化学[M]. 北京: 科学出版社, 2004: 204-205. |
XU R R, PANG W Q, YU J H, et al. Molecular sieves and porous materials chemistry[M]. Beijing: Science Press, 2004: 204-205. | |
31 | JORGENSEN W L, CHANDRASEKHAR J, MADURA J D, et al. Comparison of simple potential functions for simulating liquid water[J]. J Chem Phys, 1983, 79(2): 926-935. |
32 | WEE L H, VANDENBRANDE S, ROGGE S M J, et al. Chlorination of a zeolitic-imidazolate framework tunes packing and van der Waals interaction of carbon dioxide for optimized adsorptive separation[J]. J Am Chem Soc, 2021, 143(13): 4962-4968. |
33 | ZHANG K, NALAPARAJU A, CHEN Y, et al. Biofuel purification in zeolitic imidazolate frameworks: the significant role of functional groups[J]. Phys Chem Chem Phys, 2014, 16(20): 9643-9655. |
34 | WANG F, YANG H, KANG Y, et al. Guest selectivity of a porous tetrahedral imidazolate framework material during self-assembly[J]. J Mater Chem, 2012, 22(37): 19732-19737. |
35 | PHAN A, DOONAN C J, URIBE-ROMO F J, et al. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks[J]. Acc Chem Res, 2010, 43(1): 58-67. |
36 | BANERJEE R, PHAN A, WANG B, et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture[J]. Science, 2008, 319(5865): 939-943. |
37 | Dassault Syst′emes BIOVIA, Materials studio modeling environment, release 2017, Dassault Systemes BIOVIA[CP]. San Diego, CA, 2016. |
38 | LIU S, LIU G, ZHAO X, et al. Hydrophobic-ZIF-71 filled PEBA mixed matrix membranes for recovery of biobutanol via pervaporation[J]. J Membr Sci, 2013, 446: 181-188. |
39 | MORTADA B, CHAPLAIS G, NOUALI H, et al. Phase transformations of metal-organic frameworks MAF-6 and ZIF-71 during intrusion-extrusion experiments[J]. J Phy Chem C, 2019, 123(7): 4319-4328. |
40 | YOO D K, BHADRA B N, JHUNG S H. Adsorptive removal of hazardous organics from water and fuel with functionalized metal-organic frameworks: contribution of functional groups[J]. J Hazard Mater, 2021, 403: 123655. |
41 | ZHU Z, XU H, JIANG J, et al. Hydrophobic nanosized all-silica beta zeolite: efficient synthesis and adsorption application[J]. ACS Appl Mater Interfaces, 2017, 9(32): 27273-27283. |
[1] | Yu-Wen YANG, Jing-Yao QI, Lin LI, Guo-Ning CHU, Sai WANG, Yu ZHANG, Shuang ZHANG. Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid over Ru Supported on Magnetic NiFe2O4 [J]. Chinese Journal of Applied Chemistry, 2023, 40(6): 879-887. |
[2] | Ning YUAN, Jie MA, Jin-Ling ZHANG, Jian-Sheng ZHANG. Preparation of PCN-6(M) Bimetallic Organic Framework Materials by Steam-assisted Method and Their CO2 and CH4 Adsorption Performance [J]. Chinese Journal of Applied Chemistry, 2023, 40(6): 896-903. |
[3] | Hai-Xiang XIU, Wan-Qiang LIU, Dong-Ming YIN, Yong CHENG, Chun-Li WANG, Li-Min WANG. Research Progress of AB2 Laves Phase Hydrogen Storage Alloys [J]. Chinese Journal of Applied Chemistry, 2023, 40(5): 640-652. |
[4] | Lin YANG, Hui PAN, Ding-Feng GAO, Xiao-Dong WANG. Preparation and Characterization of Nanocomposite Leather Finishing Agent Based on Aramid Modified Polymer [J]. Chinese Journal of Applied Chemistry, 2023, 40(5): 708-719. |
[5] | Yu FANG, Wang-Qiang KUANG, Sheng-Ting KUANG, Wu-Ping LIAO. Selective Extraction and Recovery of Copper from the Leaching of Low-grade Copper Ore by H2SO4-NaCl Solution Using Cextrant 230 [J]. Chinese Journal of Applied Chemistry, 2023, 40(5): 758-768. |
[6] | Mou-Cui LI, Yang-Ming DONG, Ying-Hui REN, Hai-Xia MA, Le QI. Synthesis, Antifungal Activity and Molecular Docking Study of 1,2,4-Triazole Bis-Schiff Base Derivatives [J]. Chinese Journal of Applied Chemistry, 2023, 40(1): 116-125. |
[7] | Yan-Qin CHENG, Zhuo-Xi LI, You-Di WANG, Juan-Juan XU, Zheng BIAN. Structurally Simplified 4-Hydroxyprolinamide for Highly Efficient Asymmetric Michael Addition of Aldehydes to Nitroolefins [J]. Chinese Journal of Applied Chemistry, 2023, 40(1): 146-154. |
[8] | Jia-Xin GUO, Yang LIU, Chang-Shan XU, Xiao-Nan LIU, Liang CHENG. The Changes of Mg2+ Mass Concentration in MgO NPs Suspension and Its Effects on the Growth of Wheat (Triticum aestivum L.) under Different pH [J]. Chinese Journal of Applied Chemistry, 2022, 39(9): 1401-1411. |
[9] | En-Tong WANG, Lin-Fang YANG. Preparation and Properties of LiNi0.6Co0.2Mn0.2O2 Cathode Material for High Specific Capacity Lithium Ion Battery [J]. Chinese Journal of Applied Chemistry, 2022, 39(8): 1209-1215. |
[10] | Bing WANG, Min TANG, Ying WANG, Zhi-Guang LIU. Preparation of Y2O3⁃Dopped SiC Ceramics by Micro⁃oxidation Sintering and Removal of Cd2+ in Mimic Wastewater [J]. Chinese Journal of Applied Chemistry, 2022, 39(8): 1312-1318. |
[11] | Xue-Xian YANG, Jian ZHANG, Zhi-Gang GU. Surface‑Coordinated Metal‑Organic Framework Thin Film HKUST‑1 for Optoelectronic Applications [J]. Chinese Journal of Applied Chemistry, 2022, 39(7): 1013-1025. |
[12] | Wang LI. Morphology Control and Catalytic Dehydrogenation Performance of Zeolitic Imidazolate Frameworks⁃8 [J]. Chinese Journal of Applied Chemistry, 2022, 39(7): 1065-1072. |
[13] | Xiao-Li ZHANG, Yu-Mei PENG, Qing-Wei WANG, Li-Xia QIN, Xiao-Xia LIU, Shi-Zhao KANG, Xiang-Qing LI. Construction of Nano Ag Modified TiO2 Nanotube Array Substrate for Surface Enhanced Raman Scattering Detection and Degradation of Tetracycline Hydrochloride [J]. Chinese Journal of Applied Chemistry, 2022, 39(7): 1147-1156. |
[14] | Chao ZHANG. Research Prospect of Single Atom Catalysts Towards Electrocatalytic Reduction of Carbon Dioxide [J]. Chinese Journal of Applied Chemistry, 2022, 39(6): 871-887. |
[15] | Qin YANG, Ning-Hua CHEN, Yu-Jie ZHANG, Zhi-Xiang YE, Ying-Chun YANG. Preparation of Cerium Zirconium Composite Oxide Modified Glassy Carbon Electrode and the Detection of Pb2+ in Water Samples [J]. Chinese Journal of Applied Chemistry, 2022, 39(6): 990-999. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||