Chinese Journal of Applied Chemistry ›› 2023, Vol. 40 ›› Issue (4): 476-485.DOI: 10.19894/j.issn.1000-0518.220287
• Review • Previous Articles Next Articles
Xiao-Lin LAN1(), Hong-Xing ZHENG2(), Yi-Fan ZHANG1, Zhen ZHAO3, He-Ye XIAO4, Zhi-Jiang WANG, Peng-Yang DENG1
Received:
2022-08-30
Accepted:
2023-01-06
Published:
2023-04-01
Online:
2023-04-17
Contact:
Xiao-Lin LAN,Hong-Xing ZHENG
About author:
zhx203@126.comSupported by:
CLC Number:
Xiao-Lin LAN, Hong-Xing ZHENG, Yi-Fan ZHANG, Zhen ZHAO, He-Ye XIAO, Zhi-Jiang WANG, Peng-Yang DENG. Research Progress on Preparation of SiC Ceramic Powders by Atmospheric High Temperature Solid Phase Reaction[J]. Chinese Journal of Applied Chemistry, 2023, 40(4): 476-485.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.220287
1 | 许庭翔. 碳化硅晶体本征缺陷及其性能调控研究[D]. 上海: 中国科学院大学(中国科学院上海硅酸盐研究所), 2021. |
XU T X. Study on intrinsic defects of silicon carbide crystal and its performance regulation[D]. Shanghai: University of Chinese Academy of Sciences (Shanghai Institute of Ceramics, Chinese Academy of Sciences), 2021. | |
2 | YE F, DUAN W Y, MO R, et al. Silicon oxycarbide powders doped with in situ grown SiC nanowires: synthesis and dielectric properties[J]. Rare Met Mater Eng, 2019, 48(1): 39-43. |
3 | BAE S G, OH M, LEE Y, et al. Preparation of silicon carbide nanowires and study on absorbing properties[J]. Ceram Int, 2022, 48(9): 13295-13303. |
4 | PAPANASAM E, KUMAR B P, CHANTHINI B. et al. A comprehensive review of recent progress, prospect and challenges of silicon carbide and its applications[J]. Silicon, 2022, 14: 12887-12900. |
5 | CAO Y, DONG H, PU S, et al. Photoluminescent two-dimensional SiC quantum dots for cellular imaging and transport[J]. Nano Res, 2018, 11(8): 4074-4081. |
6 | NGUYEN T K, PHAN H P, KAMBLE H, et al. Superior robust ultrathin single-crystalline silicon carbide membrane as a versatile platform for biological applications[J]. ACS Appl Mater Interfaces, 2017, 9(48): 41641-41647. |
7 | AKIN I, KAYA O. Microstructures and properties of silicon carbide- and graphene nanoplatelet-reinforced titanium diboride composites[J]. J Alloys Compd, 2017, 729: 949-959. |
8 | WANG H, WU L, JIAO J, et al. Covalent interaction enhanced electromagnetic wave absorption in SiC/Co hybrid nanowires[J]. J Mater Chem A, 2015, 3(12): 6517-6525. |
9 | PENG Y, HAN G, WANG D, et al. Improved H-2, evolution under visible light in heterostructured SiC/CdS photocatalyst: effect of lattice match[J]. Int J Hydrogen Energy, 2017, 42(21): 14409-14417. |
10 | AEGISS E. Nano: the emerging science of nanotechnology: remaking the world-molecule by molecule[M]. Boston: Little Brown and Company, 1995. |
11 | KUANG J L, JIANG P, HOU X J. Dielectric permittivity and microwave absorption properties of SiC nanowires with different lengths[J]. Solid State Sci, 2019, 91: 73-76. |
12 | ZHU H S, QIA Q, SHI L Q. SiC nanorods of highly preferred orientation prepared by radio frequency magnetron sputtering[J]. J Vac Sci Technol B, 2013, 31: 060604. |
13 | CHEN X Y, ZHANG Q, ZHOU Y. Synthesis of bamboo-like 3C-SiC nanowires with good luminescent property via nano-ZrO2 catalyzed chemical vapor deposition technique[J]. Ceram Int, 2018, 44: 22890-22896. |
14 | GU W J, JIA S Q, QIU J D, et al. Preparation of SiC whiskers from rice husk[J]. J Chin Ceram Soc, 2014, 42(1): 28-32. |
15 | YUAN Q, LI Y Q, SONG Y C. Microstructure and thermal stability of low-oxygen SiC fibers prepared by an economical chemical vapor curing method[J]. Ceram Int, 2017, 43(12): 9128-9132. |
16 | TAO P F, WANG Y G. Fabrication of highly dense three-layer SiC cladding tube by chemical vapor infiltration method[J]. J Am Ceram Soc, 2019, 102(11): 6939-6945. |
17 | 汪涵, 尹珑龙, 郭晴, 等. 纳米碳化硅的制备与应用研究进展[J]. 广东化工, 2022, 49(8): 84-86. |
WANG H, YIN L L, GUO Q, et al. Research prospects of application and preparation of nano-silcon carbon[J]. Guangdong Chem Ind, 2022, 49(8): 84-86. | |
18 | BOUDARD D, FOREST V, POURCHEZ J, et al. In vitro cellular responses to silicon carbide particles manufactured through the Acheson process: impact of physico-chemical features on pro-inflammatory and pro-oxidative effects[J]. Toxicol In Vitro, 2014, 28(5): 856-865. |
19 | 罗昊, 张序清, 杨德仁, 等. 碳化硅单晶生长用高纯碳化硅粉体的研究进展[J].人工晶体学报, 2021, 50(8): 1562-1574. |
LUO H, ZHANG X Q, YANG D R, et al. Rsearch progress on high-purity SiC powder for single crystal SiC growth[J]. J Synth Cryst, 2021, 50(8): 1562-1574. | |
20 | HART A H C, OWUOR P S, HAMEL J, et al. Ultra-low density three-dimensional nano-silicon carbide architecture with high temperature resistance and mechanical strength[J]. Carbon, 2020, 164: 143-149. |
21 | 朱文振, 郑治祥, 姜坤, 等. 碳热还原法低温制备碳化硅微粉[J]. 硅酸盐通报, 2012, 31(1): 46-49. |
ZHU W Z, DENG Z X, JIANG K, et al. Preparation of silicon carbide micropowder at low temperature by carbothermal reduction[J]. Bull Chin Ceramic Soc, 2012, 31(1): 46-49. | |
22 | ZHANG H, XU Y, ZHOU J, et al. Stacking fault and unoccupied densities of state dependence of electromagnetic wave absorption in SiC nanowires[J]. J Mater Chem C, 2015, 3(17): 4416-4423. |
23 | WU X S, WU, X S, ZHU, Y Z, et al. Joining of SiC ceramic by Si-C reaction bonding using organic resin as carbon precursor[J]. Materials, 2022, 15(12): 4242. |
24 | WEI B, ZHOU J T, CHEN W J, et al. Excellent microwave absorption property of nano-Ni coated hollow silicon carbide core-shell spheres[J]. Appl Surf Sci, 2020, 508: 145261. |
25 | ZHANG Y, QIAN L, ZHAO W, et al. Highly efficient Fe-N-C nanoparticles modified porous graphene composites for oxygen reduction reaction[J]. J Electrochem Soc, 2018, 165: 510-516. |
26 | ZEKENTES K, CHOI J, STAMBOULI V, et al. Progress in SiC nanowire field-effect-transistors for integrated circuits and sensing applications[J]. Microelectron Eng, 2022, 255: 111704. |
27 | CUTLER I B. Production of SiC from rice hulls.US patent 3754076[P].1973-8-12. |
28 | GREIL P, LIFKA T, KAINDL A. Biomorphic cellular silicon carbide ceramics from wood: II. mechanical properties[J]. J Eur Ceram Soc, 1998, 18(14): 1975-1983. |
29 | LIU C, YU D, KIRK D W, et al. Porous silicon carbide derived from apple fruit with high electromagnetic absorption performance[J]. J Mater Chem C, 2016, 4(23): 5349-5356. |
30 | LAN X, LIANG C, WU M, et al. Facile synthesis of highly defected SiC sheets for efficient absorption of electromagnetic waves[J]. J Phys Chem C, 2018, 122(32): 18537-18544. |
31 | MIZERSKA U, FORTUNIAK W, CHOJNOWSKI J, et al. Porous SiC and SiC/Cf ceramic microspheres derived from polyhydromethylsiloxane by carbothermal reduction materials[J]. Materials, 2022, 15(1): 81. |
32 | ZHANG X, HUANG X, WEN G, et al. Novel SiOC nanocomposites for high-yield preparation of ultra-large-scale SiC nanowires[J]. Nanotechnology, 2010, 21(38): 385601. |
33 | CHEN H, JIANG J, ZHAO H. Synthesis of highly dispersed silicon carbide powders by a solvothermal-assisted sol-gel process[J]. Appl Phys A, 2018, 124(7): 470. |
34 | 肖飞飞, 李蛟, 樊震坤, 等. 聚合物转化陶瓷在吸波领域的研究进展[J]. 山东陶瓷, 2019, 42(6): 3-6. |
XIAO F F, LI J, FAN Z K, et al. Research progress of polymer-converted ceramics in the field of wave absorbing[J]. Shandong Ceram, 2019, 42(6): 3-6. | |
35 | 丁丽娟. 碳化硅纳米线的生长热力学分析及制备研究[D]. 杭州: 浙江理工大学, 2017. |
DING L J. Growth thermodynamic analysis and preparation of silicon carbide nanowires[D]. Hangzhou: Zhejiang Sci-Tech University, 2017. | |
36 | 邱泽超. 枝状碳化硅制备及吸波性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. |
QIU Z C. Preparation and absorbing properties of dendritic silicon carbide[D]. Harbin: Harbin Institute of Technology, 2018. | |
37 | JU C H, ZHENG X, GOU C, et al. Sulfur-assisted approach for the low-temperature synthesis of β-SiC nanowires[J].Eur J Inorg Chem, 2008(24): 3883-3888. |
38 | GE Y C, LIU Y Q, SHUAI W U, et al. Characterization of SiC nanowires prepared on C/C composite without catalyst by CVD[J]. Trans Nonferrous Met Soc China, 2015, 25(10): 3258-3264. |
39 | WU J, QIAN S T, HUO, T G, et al. Effect of PyC inner coating on preparation of 3C-SiC coating on quartz glass by chemical vapor reaction[J]. Front Mater, 2022, 9: 897900. |
40 | ATTOLINI G, ROSSI F, NEGRI M, et al. Growth of SiC nws by vapor phase technique using Fe as catalyst[J]. Mater Lett, 2014, 124(6): 169-172. |
41 | 杨涛. 一维3C-SiC纳米结构光/电特性调控与应用[D]. 北京: 北京科技大学, 2018. |
YANG T. One-dimensional 3C-SiC nanostructure optical/electrical properties regulation and application[D]. Beijing: Beijing University of Science and Technology, 2018. | |
42 | 李俭国. 超快激光诱导碳化硅表面改性机理研究[D]. 广州: 广东工业大学, 2020. |
LI J G. Study on the mechanism of ultrafast laser-induced surface modification of silicon carbide[D]. Guangzhou: Guangdong University of Technology, 2020. | |
43 | AMIN J, HAMID T, OMID T. Potency of different carbon sources in reduction of microsilica to synthesize SiC from mechanically activated powder mixtures[J]. Int J Appl Ceram Technol, 2016, 13(5): 937-947. |
44 | MAGNANI G, GALVAGNO S, SICO G, et al. Sintering and mechanical properties of β-SiC powder obtained from waste tires[J]. J Adv Ceram, 2016, 5(1): 40-46. |
45 | WAGNER R S. On the growth of germanium dendrites[J]. Acta Metall, 1960, 8(1): 57-60. |
46 | 李雪婷. 碳化硅纳米线基多元吸波材料的制备与性能研究[D]. 西安: 西安建筑科技大学, 2021. |
LI X T. Preparation and properties of silicon carbide nanowire-based multicomponent absorbers[D]. Xi'an: Xi'an University of Architecture and Technology, 2021. | |
47 | DUAN W, YIN X, LI Q, et al. Synthesis and microwave absorption properties of SiC nanowires reinforced SiOC ceramic[J]. J Eur Ceram Soc, 2014, 34: 257-266. |
48 | LIU L, YANG S, HU H T, et al. Lightweight and efficient microwave-absorbing materials based on loofah-sponge-derived hierarchically porous carbons[J]. ACS Sustainable Chem Eng, 2018, 7(1): 1228-1238. |
49 | SUN X, YANF M, YANG S, et al. Ultrabroad band microwave absorption of carbonized waxberry with hierarchical structure[J]. Small, 2019, 15(43): 1902974. |
50 | ZHAO H, CHENG Y, MA J, et al. A sustainable route from biomass cotton to construct lightweight and high-performance microwave absorber[J]. Chem Eng J, 2018, 339: 432-441. |
51 | HUANG L, LI J, WANG Z, et al. Microwave absorption enhancement of porous C@CoFe2O4 nanocomposites derived from eggshell membrane[J]. Carbon, 2019, 143: 507-516. |
52 | MAITY A, DAS H, KALITA D, et al. Studies on formation and siliconization of carbon template of coir fibreboard precursor to SiC ceramics[J]. J Eur Ceram Soc, 2014, 34(15): 3499-3511. |
53 | WANG H, WU L, JIAO J, et al. Covalent interaction enhanced electromagnetic wave absorption in SiC/Co hybrid nanowires[J]. J Mater Chem A, 2015, 3(12): 6517-6525. |
54 | DAI H, WONG E W, LU Y Z, et al. Synthesis and characterization of carbide nanorods[J]. Nature, 1995, 375(6534): 769-772. |
55 | MENG G W, CUI Z, ZHANG L D, et al. Growth and characterization of nanostructured β-SiC via carbothermal reduction of SiO2 aerogels containing carbon nanoparticles[J]. J Cryst Growth, 2000, 209(4): 801-806. |
56 | HAN M, YIN X, HOU Z, et al. Flexible and thermostable graphene/SiC nanowires foam composites with tunable electromagnetic wave absorption properties[J]. ACS Appl Mater Interfaces, 2017, 9(13): 11803. |
57 | GAO L, ZHONG H, CHEN Q. Synthesis of 3C-SiC nanowires by reaction of poly(ethylene terephthalate) waste with SiO2 microspheres[J]. J Alloys Compd, 2013, 566(2): 212-216. |
58 | 张颖, 蒋明学, 张军战. 合成温度对碳热还原法合成碳化硅晶须形貌的影响[J]. 人工晶体学报, 2010, 39(2): 369-374. |
ZHANG Y, JIANG M X, ZHANG J Z. Effect of synthesis temperature on morphology of silicon carbide whisker synthesized by carbothermal reduction[J]. J Synth Cryst, 2010, 39(2): 369-374. | |
59 | FENG W, MA J, YANG W. Precise control on the growth of SiC nanowires[J]. Crystengcomm, 2012, 14(4): 1210-1212. |
60 | XIA Y, YANG P, SUN Y. One-dimensional nanostructures: synthesis, characterization, and applications[J]. Adv Mater, 2010, 15(5): 353-389. |
61 | SEO W S, KOUMOTO K. Stacking faults in β-SiC formed during carbothermal reduction of SiO2[J]. J Am Ceram Soc, 1996, 79(7): 1777-1782. |
62 | LEE J S, BYEUN Y K, LEE S H, et al. In situ growth of SiC nanowires by carbothermal reduction using a mixture of low-purity SiO2 and carbon[J]. J Alloys Compd, 2008, 456(1): 257-263. |
63 | 张晓东. 准一维SiC和Si3N4纳米材料的合成与表征[D]. 哈尔滨: 哈尔滨工业大学, 2010. |
ZHANG X D. Synthesis and characterization of quasi-one-dimensional SiC and Si3N4 nanomaterials[D]. Harbin: Harbin Institute of Technology, 2010. | |
64 | WEI J, LI K, CHEN J, et al. Synthesis of centimeter-scale ultra-long SiC nanowires by simple catalyst-free chemical vapor deposition[J]. J Cryst Growth, 2011, 335(1): 160-164. |
65 | CHEN J J, PAN Y, TANG W H, et al. Tuning the morphologies of SiC nanowires via the change of the CoxSiy melts[J]. Nano-Micro Lett, 2010, 2(1): 11-17. |
66 | 李心慰, 曲殿利, 李志坚, 等. 合成碳化硅的热力学分析及碳化硅晶须生长的表征[J]. 人工晶体学报, 2013, 42(10): 2160-2163. |
LI X W, QU D L, LI Z J, et al. Thermodynamic analysis of synthesized silicon carbide and characterization of silicon carbide whisker growth[J]. J Synth Cryst, 2013, 42(10): 2160-2163. | |
67 | YAO W Q, LIU H T, SUN J Z, et al. Engineering of chemical vapor deposition graphene layers: growth, characterization, and properties[J]. Adv Funct Mater, 2022: 2202584. |
68 | CHEN S L, LI W J, LI X X, et al. One-dimensional SiC nanostructures: designed growth, properties, and applications[J]. Prog Mater Sci, 2019, 104: 138-214. |
69 | ZEKENTES K, CHOU J, STAMBOULI V, et al. Progress in SiC nanowire field-effect-transistors for integrated circuits and sensing applications[J]. Microelectron Eng, 2022, 255: 111704 |
70 | HU P, DONG S, ZHANG D Y, et al. Catalyst-assisted synthesis of core-shell SiC/SiO2 nanowires via a simple method[J]. Ceram Int, 2016, 42: 1581-1587. |
71 | ZHANG M, LI Z J, ZHAO J, et al. Amorphous carbon coating for improving the field emission performance of SiC nanowire cores[J]. J Mater Chem C, 2015, 3(3): 658-663. |
72 | HE W Z, CHEN C Q, XU Z P, et al. Molecular dynamics simulations of silicon carbide nanowires under single-ion irradiation[J]. J Appl Phys, 2019, 126(12): 125902. |
[1] | Yu-Wen YANG, Jing-Yao QI, Lin LI, Guo-Ning CHU, Sai WANG, Yu ZHANG, Shuang ZHANG. Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid over Ru Supported on Magnetic NiFe2O4 [J]. Chinese Journal of Applied Chemistry, 2023, 40(6): 879-887. |
[2] | Ye LIU, Shao-Bo GUO, Yan-Li LIANG, Hong-Guang GE, Jian-Qi MA, Zhi-Feng LIU, Bo LIU. Preparation and Catalytic Performance of Core‑Shell CuFe2O4@NH2@Pt Nanocomposites [J]. Chinese Journal of Applied Chemistry, 2022, 39(8): 1237-1245. |
[3] | Wen-Dong WANG, Zai-Jun LI. Synthesis of Ruthenium‑Graphene Quantum Dots Artificial Oxidase and Its Application in Colorimetric Detection of Phoxim in Carrots [J]. Chinese Journal of Applied Chemistry, 2022, 39(8): 1285-1293. |
[4] | Feng-Zhou XU, Hua-Ying TANG, Wu-Hui LIU, Yi-Feng JIANG, Wen-Kai LI, Xian-Hai LU. A Visual Semi⁃quantitative Method for Rapid Detection of Copper Ion in Water [J]. Chinese Journal of Applied Chemistry, 2022, 39(8): 1303-1311. |
[5] | Bing WANG, Min TANG, Ying WANG, Zhi-Guang LIU. Preparation of Y2O3⁃Dopped SiC Ceramics by Micro⁃oxidation Sintering and Removal of Cd2+ in Mimic Wastewater [J]. Chinese Journal of Applied Chemistry, 2022, 39(8): 1312-1318. |
[6] | Tao GONG, Chao-Chao WEN, Kai-Li QIN, Ying-Zhu ZAHO, Yu-Qi ZHANG, Wen-Ting LIANG, Chuan DONG. Preparation of Formyl Deoxycholic Acid Modified Fe3O4 Nanoparticles and Their Application for Oxytetracycline Loading [J]. Chinese Journal of Applied Chemistry, 2022, 39(12): 1920-1926. |
[7] | NIU Zhan-Ning, TANG Hao-Qing, ZHENG Chao, TIAN Tian, ZHENG Li-Yun. Study on [RESA]Br@-COOH@Fe3O4 with Density Functional Theory [J]. Chinese Journal of Applied Chemistry, 2021, 38(7): 825-835. |
[8] | CHEN Song-Hua, CHEN Xin, LIU Yong-Qi, HE Mei-Yun, FU Shan-Shan, PENG Li, YANG Ji-En. Preparation and Optical Waveguide Property of Benzothiadiazole-Containing One Dimensional Micro-nanowires [J]. Chinese Journal of Applied Chemistry, 2021, 38(11): 1479-1485. |
[9] | Yuan DENG, Yao-Jian FAN, Lei TAO, Zhi-Wang LUO, He-Lou XIE. Liquid Crystal Nanoparticles Containing Azobenzene:Synthesis, Supramolecular Structure and Their Applications in Light⁃Controlled Orientation [J]. Chinese Journal of Applied Chemistry, 2021, 38(10): 1353-1361. |
[10] | GAO Ming, ZHAO Kaidong, LIU Xiangyong, JIN Yuanzhe. Preparation of Molybdenum Disulfide Nanoparticles and the Cytoprotection on Cardiac Myocytes [J]. Chinese Journal of Applied Chemistry, 2020, 37(9): 1010-1021. |
[11] | DUAN Jinchi, QI Yunxia, SHI Chengying, ZHAO Qi, LIU Baijun, SUN Zhaoyan, XU Yiquan, HU Wei, ZHANG Niaona. Electron Beam Radiation Modification of Polyethylene Thermal Conductive Composites [J]. Chinese Journal of Applied Chemistry, 2020, 37(8): 896-903. |
[12] | ZHANG Jingjing, XIAO Xin, SHI Dongjian, CHEN Mingqing. Morphology Regulation of Polydopamine Self-polymerization on the Surface of Strongly Electronegative Microspheres [J]. Chinese Journal of Applied Chemistry, 2020, 37(7): 756-763. |
[13] | QIAN Jin, HAO Yanzhong, LI Jingqi, PEI Juan, LI Yingpin. Preparation of TiO2 Branched Nanorod Array to Improve the Performance of Polymer Hybrid Solar Cell [J]. Chinese Journal of Applied Chemistry, 2020, 37(6): 695-702. |
[14] | SUN Li'na,LI Yan,GUO Hantao,HUANG Tingting,YAO Bixia,WENG Wen. Preparation of Nitrogen and Iron Co-doped Carbon Nanoparticles and Their Applications in Detection of Hydrogen Peroxide and Glucose [J]. Chinese Journal of Applied Chemistry, 2020, 37(3): 350-358. |
[15] | HUANG Xuewen, XU Sheng, ZHAO Wei, WEI Wei, LI Xiaojie, LIU Xiaoya. Hydrogen Peroxide Sensor Based on a Polymeric Self-assembled Nanoparticles-Modified Screen-Printed Electrode [J]. Chinese Journal of Applied Chemistry, 2020, 37(2): 235-241. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||