
Chinese Journal of Applied Chemistry ›› 2025, Vol. 42 ›› Issue (5): 621-641.DOI: 10.19894/j.issn.1000-0518.240314
• Review • Previous Articles
Zhi-Jun ZHANG1,2, You-Mei XING1,2(), Zhen WU1, Wei-Hua FANG2, Yun-Jian YIN2, Guo-Jie WANG1(
)
Received:
2024-10-08
Accepted:
2025-04-04
Published:
2025-05-01
Online:
2025-06-05
Contact:
You-Mei XING,Guo-Jie WANG
About author:
gracexing@greendachem.comSupported by:
CLC Number:
Zhi-Jun ZHANG, You-Mei XING, Zhen WU, Wei-Hua FANG, Yun-Jian YIN, Guo-Jie WANG. Research Progress in the Synthesis, Assembly and Applications of Gemini Surfactants[J]. Chinese Journal of Applied Chemistry, 2025, 42(5): 621-641.
Fig.7 SEM images of micelle formed by Gemini surfactants DS 18-3-18 (A) and DC 18-3-18 (B)[42]; TEM images of micelle formed by Gemini surfactants: oil amide Gemini surfactant (C), stearic amide Gemini surfactant (D)[43]; DFCS (E)[44] and (F) C14Φ2C14[45]; Rheological measurement curve of C12-azo-C12 (G)[46]; FF-TEM image of C14(azo)C14(H)[47]
Fig.8 TEM images of vesicles formed by Gemini surfactants PKO 15-3(OH)-12 (A), PKO 15-3(OH)-14 (B) and PKO 15-3(OH)-16 (C)[48]; Optical microscope photos of vesicles formed by Gemini surfactants in solvents: water/methanol solution (D) and chloroform (E)[49]; Photograph of mixture: molar ratio of SGS12/CTAB is 4∶6 (F)[50]
Fig.9 Schematic diagram of mixed micelles formed by 16-E1-16 and P123 (A)[51]; Optical microscope photos about phase size changing with temperature of α-gel phase (B)[52]; Schematic diagram of GOHAC gel (C)[53]
Fig.10 SEM image of C12-6-12/PAM aggregates in the coacervate phase at the C12-6-12 concentration of 6.0 mmol/L (A)[54]; The photo of C12-6-12/NaCMC/NaBz system with 20.00 mmol/L C12-6-12 and 0.25 mol/L NaBz (B)[55]; Cryo-TEM image of the coacervation of C12-6-12/H2Bzglu mixtures at pH=4.5 and at 36.7 mmol/L H2Bzglu with C12-6-12 of 10.0 mmol/L (C)[56]
Fig.11 TEM images of liquid crystal phase with polymerized PC11-6-11: L α liquid crystal phase (A) and H2 liquid crystal phase (B)[57]; POM images for the reverse hexagonal phases obtained in m-2-m/EAN systems: 14-2-14, 78.7%, 130 ℃ (C); 12-2-12, 78.5%, 105 ℃ (D) and 10-2-10, 85.9%, 82 ℃ (E)[58]
Fig.12 Histogram of BES-5 aggregates' sizes versus the concentration of KCl (A)[60]; Schematic diagram of the micelle structure transformation of Gemini surfactants under the influence of UV or pH (B)[61]; Schematic diagram of micelle structure transition of non-covalent Gemini-like surfactants under pH effect (C)[20]; TEM image of vesicles formed by SDDC under the addition of Cu2+ (D)[62]; Schematic diagram of reversible transformation of GCS/NDPO mixture under the action of CO2/N2 (E)[63]; Cryo-TEM images of C18-4-C18 solution (F) and C18-4-C18 and 1% n-decane solution (G)[64]
Fig.13 Optical microscope images of rock/liquid suspensions: sandstone-oil-aqueous-GS-SNP (A), sandstone-oil-aqueous-GS-BNP (B), carbonate-oil-aqueous-GS-SNP (C) and carbonate-oil-aqueous-GS-SNP (D)[68]
Fig.14 The mechanism diagram of preparing mesoporous molecular sieves using Gemini surfactant as a template (A)[69]; SEM image of silica nanocapsules (B)[70]; SEM images of V2O5 crystal nanorods (C)[71]
Fig.15 Schematic diagram of the adsorption effect of DMAEB on the surface of N80 carbon steel (A)[74]; Schematic diagram of the adsorption effect of Gemini surfactant on the surface of calcite (B)[75]
Fig.16 TEM image of vesicles formed by Gemini surfactant (A)[81] and curcumin; TEM image of vesicles formed by Gemini surfactant (B)[82] and diclofenac sodium
Chemical structures | Aggregate structures | Application fields | Ref. |
---|---|---|---|
![]() | Micelle | Petroleum exploration | [ |
![]() | Vesicle | Synthetic templates | [ |
![]() | Micelle, vesicle | Drug carrier | [ |
![]() | Micelle, vesicle | CO2 detection | [ |
![]() | Gel | Fracturing fluid | [ |
![]() | Liquid crystal | Liquid crystal display | [ |
Table 1 Chemical structures, aggregate structures and applications of Gemini surfactants
Chemical structures | Aggregate structures | Application fields | Ref. |
---|---|---|---|
![]() | Micelle | Petroleum exploration | [ |
![]() | Vesicle | Synthetic templates | [ |
![]() | Micelle, vesicle | Drug carrier | [ |
![]() | Micelle, vesicle | CO2 detection | [ |
![]() | Gel | Fracturing fluid | [ |
![]() | Liquid crystal | Liquid crystal display | [ |
1 | CHEN W D, SCHECHTER D S. Surfactant selection for enhanced oil recovery based on surfactant molecular structure in unconventional liquid reservoirs[J]. J Pet Sci Eng, 2021, 196: 107702. |
2 | ATIK A, SINGH K, CHAUHAN S. Study of interactions of the cationic 12-2-12 Gemini surfactant with saccharides in aqueous solution: volumetric, compressibility and viscometric analysis[J]. Tenside Surfactants Deterg, 2022, 59(4): 305-318. |
3 | FENG J J, YAN Z H, SONG J M, et al. Study on the structure-activity relationship between the molecular structure of sulfate Gemini surfactant and surface activity, thermodynamic properties and foam properties[J]. Chem Eng Sci, 2021, 245: 116857. |
4 | 唐永强, 朱琳一, 韩玉淳, 等. 支链醇对Gemini表面活性剂表面活性和胶束化行为的影响[J]. 化学学报, 2014, 72(6): 673-681. |
TANG Y Q, ZHU L Y, HAN Y C, et al. Effects of branched-chain alcohols on surface activity and micellization of gemini surfactants[J]. Acta Chim Sin, 2014, 72(6): 673-681. | |
5 | MAO J C, HUANG Z G, CUN M, et al. Effect of spacer hydroxyl number on the performance of Gemini cationic viscoelastic surfactant for fracturing fluids[J]. J Mol Liq, 2022, 346: 117889. |
6 | ZHOU G, WANG Q, LI S L, et al. Effect of a newly synthesized anionic gemini surfactant composite fracturing system on the wettability of coking coal[J]. Process Saf Environ Prot, 2023, 169: 13-23. |
7 | KARABORNI S, ESSELINK K, HILBERS P A J, et al. Simulating the self-assembly of gemini (dimeric) surfactants[J]. Science, 1994, 266(5183): 254-256. |
8 | HUO Q S, LEON R, PETROFF P M, et al. Mesostructure design with gemini surfactants: supercage formation in a three-dimensional hexagonal array[J]. Science, 1995, 268(5215): 1324-1327. |
9 | BUNTON C A, ROBINSON L, SCHAAK J, et al. Catalysis of nucleophilic substitutions by micelles of dicationic detergents[J]. J Org Chem, 1971, 36(16): 2346-2350. |
10 | MENGER F M, LITTAU C A. Gemini-surfactants: synthesis and properties[J]. J Am Chem Soc, 1991, 113(4): 1451-1452. |
11 | SUN Y P, TANG J, XIA Y L, et al. Experimental study on the promoting effect of surfactants on the fracturing fluid flowback in shale gas wells[J]. Fresenius Environ Bull, 2020, 29(2): 1214-1221. |
12 | DATIR K, SHINDE H, PRATAP A P. Preparation of a Gemini surfactant from mixed fatty acid and its use in cosmetics[J]. Tenside Surfactants Deter, 2021, 58(1): 67-73. |
13 | 杨伟光, 曹玉朋, 鞠洪斌, 等. 油酸酰胺基季铵盐Gemini表面活性剂的制备及性能[J]. 应用化学, 2021, 38(2): 220-227. |
YANG W G, CAO Y P, JU H B, et al. Synthesis and properties of oleamide quaternary ammonium gemini surfactant[J]. Chin J Appl Chem, 2021, 38(2): 220-227. | |
14 | PAN Y Q, GE B Q, ZHANG Y L, et al. Surface activity and cleaning performance of Gemini surfactants with rosin groups[J]. J Mol Liq, 2021, 336: 116222. |
15 | WANG Z F, LI Y L, SONG Y B, et al. Synthesis and properties of a quaternary ammonium salt Gemini surfactant with diethyl ether as the spacer group[J]. Tenside Surfactants Deterg, 2020, 57(1): 82-89. |
16 | SHABAN S M, ABD E S, TAWFIK S M, et al. Studying surface and thermodynamic behavior of a new multi-hydroxyl Gemini cationic surfactant and investigating their performance as corrosion inhibitor and biocide[J]. J Mol Liq, 2020, 316: 113881. |
17 | GU Y, ZHOU M, TU H J. Effect of linking groups and hydrophobic groups on properties of sulfate Gemini surfactants[J]. J Mol Liq, 2022, 367: 120346. |
18 | GAO M, WANG X G, LV W F, et al. Adsorption behaviors of branched cationic Gemini surfactants and wettability in quartz-solution-air systems[J]. Soft Matter, 2020, 16(23): 5450-5457. |
19 | WANG Y X, CAO Y Q, ZHANG Q, et al. Novel cationic Gemini surfactants based on piperazine: synthesis, surface activity, and foam ability[J]. J Disper Sci Technol, 2016, 37(4): 465-471. |
20 | XU J, XIE H Y, ZHANG H H, et al. New insight into the transition mechanism of pH-tunable wormlike micelles based on experiments and DPD simulation[J]. Colloid Surface A, 2019, 563: 280-288. |
21 | ZHOU H T, WU H Y, YANG Y P, et al. Facile construction of gemini-like surfactants at the interface and their effects on the interfacial tension of a water/model oil system[J]. RSC Adv, 2017, 7(51): 32413-32418. |
22 | ZANA R. Dimeric and oligomeric surfactants. behavior at interfaces and in aqueous solution: a review[J]. Adv Colloid Interface Sci, 2002, 97(1/2/3): 205-253. |
23 | KAMAL M S. A review of Gemini surfactants: potential application in enhanced oil recovery[J]. J Surfactants Deterg, 2016, 19(2): 223-236. |
24 | 赵剑曦. 新一代表面活性剂: Geminis[J]. 化学进展, 1999, 11(4): 348-357. |
ZHAO J X. A new generation of surfactants: Geminis[J]. Prog Chem, 1999, 11(4): 348-357. | |
25 | ZHU L Y, TANG Y Q, WANG Y L. Constructing surfactant systems with the characteristics of Gemini and oligomeric surfactants through noncovalent interaction[J]. J Surfactants Deterg, 2016, 19(2): 237-247. |
26 | 王月星, 韩冬, 王红庄, 等. Gemini表面活性剂的吸附、自聚和性质[J]. 化学世界,2003, 44: 216-219, 199. |
WANG Y X, HAN D, WANG H Z, et al. Adsorption, self-assembly and properties of Gemini surfactants[J]. Chem World, 2003, 44: 216-219, 199. | |
27 | 李长平, 李沼萱, 张金辉, 等. 高活性两性Gemini表面活性剂的研究进展[J]. 应用化工, 2019, 48(9): 2235-2241. |
LI C P, LI Z X, ZHANG J H, et al. The research progress of highly active amphoteric Gemini surfactant[J]. Appl Chem Ind, 2019, 48(9): 2235-2241. | |
28 | 韩玉淳, 范雅珣, 伍春娴, 等. 寡聚表面活性剂的合成及其聚集行为的研究[J]. 中国科学: 化学, 2015, 45(4): 327-339. |
HAN Y C, FAN Y X, WU C X, et al. Synthesis and aggregation behavior of oligomeric surfactants[J]. Sci China Chem, 2015, 45(4): 327-339. | |
29 | KIRBY A J, CAMILLERI P, ENGBERTS J B F N, et al. Gemini surfactants: new synthetic vectors for gene transfection[J]. Angew Chem Int Ed, 2003, 42(13): 1448-1457. |
30 | KHAN S, GBADAMOSI A, NORRMAN K, et al. Adsorption study of novel Gemini cationic surfactant in carbonate reservoir cores-influence of critical parameters[J]. Materials, 2022, 15(7): 2527. |
31 | HU S Q, FU D J, CHEN H Y, et al. Surface activities, antibacterial activity and corrosion inhibition properties of Gemini quaternary ammonium surfactants with amido group and carboxylic counterions[J]. J Oleo Sci, 2020, 69(7): 703-710. |
32 | 王睿, 唐善法, 姜昭文, 等. 羧酸盐Gemini表面活性剂的合成及性能[J]. 应用化工, 2022, 51(364): 1608-1613. |
WANG R, TANG S F, JIANG Z W, et al. Synthesis and performance of carboxylate Gemini surfactant[J]. Appl Chem Ind, 2022, 51(364): 1608-1613. | |
33 | ABO-RIYA M A, BAKER S A. Novel synthesized anionic gemini and monomeric surfactants bearing sulphonate group as petro-dispersing/collecting agents: design, characterization and surface-active properties[J]. J Mol Struct, 2023, 1274: 134502. |
34 | ZHANG Y, MAO J C, ZHAO J Z, et al. Preparation of a novel sulfonic Gemini zwitterionic viscoelastic surfactant with superior heat and salt resistance using a rigid-soft combined strategy[J]. J Mol Liq, 2020, 318: 114057. |
35 | MANSHA M, ULLAH N, KALGAONKAR R A, et al. Synthesis, characterization, and viscosification of amidosulfobutaine and zwitterionic Gemini surfactants[J]. J Surfactants Deterg, 2020, 24(4): 697-706. |
36 | 花昌林, 张锐, 左星成, 等. PEG-Gemini型非离子表面活性剂的合成及应用[J]. 精细化工, 2020, 37: 2504-2509. |
HUA C L, ZHANG R, ZUO X C, et al. Synthesis and application of PEG-Gemini non-ionic surfactants[J]. Fine Chem, 2020, 37: 2504-2509. | |
37 | GAWALI I T, USMANI G A. Novel non ionic Gemini surfactants from fatty acid and diethanolamine: synthesis, surface active properties and anticorrosion study[J]. Chem Afr, 2020, 3(1): 75-88. |
38 | DONG Q W, LI X, DONG J X. Synthesis of branched surfactant via ethoxylation of oleic acid derivative and its surface properties[J]. Chem Eng Sci, 2022, 258: 117747. |
39 | 马杰文, 张之钧, 李雅琪, 等. 低泡型非离子Gemini表面活性剂的合成及性能研究[J]. 高分子学报, 2024, 55(10): 1356-1364. |
MA J W, ZHANG Z J, LI Y Q, et al. Synthesis and properties of low-foaming nonionic Gemini surfactants[J]. Acta Polym Sin, 2024, 55(10): 1356-1364. | |
40 | LI Z, KANG W L, ZHAO Y L, et al. Organic acid-enhanced viscoelastic surfactant and its application in fracturing fluids[J]. Energy Fuels, 2021, 35(4): 3130-3139. |
41 | ZHENG Y C, LU X B, LAI L, et al. The micelle thermodynamics and mixed properties of sulfobetaine-type zwitterionic Gemini surfactant with nonionic and anionic surfactants[J]. J Mol Liq, 2020, 299: 112108. |
42 | HU R Z, TANG S F, MPELWA M, et al. Study on the structure-activity relationship between the molecular structure of anionic Gemini surfactants and the rheological properties of their micelle solutions[J]. J Disper Sci Technol, 2022, 43(4): 490-500. |
43 | YANG W G, CAO Y P, WANG Y K, et al. Effects of unsaturated double bonds on adsorption and aggregation behaviors of amide-based cationic Gemini surfactants[J]. Colloid Surface A, 2021, 611: 125778. |
44 | ZENG G Y, ZHONG C R, WANG X C, et al. Micellization thermodynamics, interfacial behavior, salt-resistance and wettability alteration of gemini hybrid fluorinated surfactant[J]. Colloid Surface A, 2023, 660: 130859. |
45 | 谢丹华, 赵剑曦, 刘琳, 等. 一个高粘弹的阴离子蠕虫胶束体系[J]. 物理化学学报, 2013, 29(7): 1534-1540. |
XIE D H, ZHAO J X, LIU L, et al. A highly viscoelastic anionic wormlike micellar system[J]. Acta Phys-Chim Sin, 2013, 29(7): 1534-1540. | |
46 | SONG B L, HU Y F, ZHAO J X. A single-component photo-responsive fluid based on a Gemini surfactant with an azobenzene spacer[J]. J Colloid Interface Sci, 2009, 333(2): 820-822. |
47 | SONG B L, HU Y F, SONG Y M, et al. Alkyl chain length-dependent viscoelastic properties in aqueous wormlike micellar solutions of anionic Gemini surfactants with an azobenzene spacer[J]. J Colloid Interface Sci, 2010, 341(1): 94-100. |
48 | XIE Y C, YANG T, MA J J, et al. Synthesis, surface activities and aggregation properties of asymmetric Gemini surfactants[J]. Phys Chem Chem Phys, 2021, 23(48): 27460-27467. |
49 | VALLS A, ALTAVA B, ASEYEV V, et al. Imidazolium based Gemini amphiphiles derived from L-valine. structural elements and surfactant properties[J]. J Mol Liq, 2021, 341: 117434. |
50 | KANG C Y, WU J, ZHENG Y C, et al. Studies on the surface properties and microaggregates of cationic/anionic surfactant mixtures based on sulfonate Gemini surfactant[J]. J Mol Liq, 2021, 320: 114431. |
51 | QADRI H K, SHAHEEN A, RASHID S, et al. Micellization and gelation characteristics of Pluronic P123 and single ester-bonded cleavable cationic Gemini surfactant: a potential system for solubilization and release of ibuprofen[J]. J Mol Liq, 2022, 366: 120311. |
52 | SUGAHARA T, AKAMATSU M, IWASE H, et al. Structural change of an α-gel (α-form hydrated crystal) induced by temperature and shear flow in an oleic acid based Gemini surfactant system[J]. Langmuir, 2020, 36(17): 4695-4701. |
53 | LIU P, DAI C L, GAO M W, et al. Development of the Gemini gel-forming surfactant with ultra-high temperature resistance to 200 ℃[J]. Gels, 2022, 8(10): 600. |
54 | DENG M L, CAO M W, WANG Y L. Coacervation of cationic Gemini surfactant with weakly charged anionic polyacrylamide[J]. J Phys Chem B, 2009, 113(28): 9436-9440. |
55 | WANG R J, YAN H T, MA W W, et al. Complex formation between cationic Gemini surfactant and sodium carboxymethylcellulose in the absence and presence of organic salt[J]. Colloid Surface A, 2016, 509: 293-300. |
56 | WANG M N, FAN Y X, HAN Y C, et al. Coacervation of cationic Gemini surfactant with N-benzoylglutamic acid in aqueous solution[J]. Langmuir, 2013, 29(48): 14839-14847. |
57 | AKAMATSU M, OGURA K, TSUCHIYA K, et al. Phase behavior and polymerization of the ternary polymerizable cationic Gemini surfactant/fatty alcohol/water system[J]. Langmuir, 2020, 36(4): 986-990. |
58 | WANG X D, CHEN X, ZHAO Y R, et al. Nonaqueous lyotropic liquid-crystalline phases formed by Gemini surfactants in a protic ionic liquid[J]. Langmuir, 2012, 28(5): 2476-2484. |
59 | ZHANG S H, YUAN J, MA H C, et al. Aqueous phase behavior of ionic liquid-related Gemini surfactant revealed by differential scanning calorimetry and polarized optical microscopy[J]. Colloid Polym Sci, 2011, 289: 213-218. |
60 | ZHANG Y, MAO J C, ZHAO J Z, et al. Synergy between different sulfobetaine-type zwitterionic Gemini surfactants: surface tension and rheological properties[J]. J Mol Liq, 2021, 332: 115141. |
61 | JIAO W X, WANG Z, LIU T Q, et al. pH and light dual stimuli-responsive wormlike micelles with a novel Gemini surfactant[J]. Colloid Surface A, 2021, 618: 126505. |
62 | GÓMEZ E M P, SILVA O F, OHANNESIAN M D, et al. Micelle-to-vesicle transition of lipoamino Gemini surfactant induced by metallic salts and its effects on antibacterial activity[J]. J Mol Liq, 2022, 353: 118793. |
63 | XIONG C M, WEI F L, ZHOU Q, et al. A CO2-responsive smart fluid based on supramolecular assembly structures varying reversibly from vesicles to wormlike micelles[J]. RSC Adv, 2020, 10: 25311-25318. |
64 | AVDEEV M M, CHESNOKOV Y M, KOZLOV S V, et al. New long tail gemini surfactant in aqueous solution: self-assembly, rheological properties and responsiveness to hydrocarbon[J]. J Mol Liq, 2024, 403: 124930. |
65 | LI Z X, LI L, SUN X L, et al. Research on the synthesis and application of aminosulfonic acid Gemini surfactant[J]. Materia-Brazil, 2022, 27(3): e20220075. |
66 | DABIRI A, HONARVAR B. Investigation of interfacial tension reduction, wettability alteration, and oil recovery using a new non-ionic oil-based surfactant from Gemini surfactants family coupled with low-salinity water: experimental study on oil-wet carbonate rock[J]. J Surfactants Deterg, 2020, 23(4): 821-829. |
67 | PAL N, MANDAL A. Numerical simulation of enhanced oil recovery studies for aqueous gemini surfactant-polymer-nanoparticle systems[J]. AIChE J, 2020, 66(11): e17020. |
68 | PAL N, VERMA A, OJHA K, et al. Nanoparticle-modified Gemini surfactant foams as efficient displacing fluids for enhanced oil recovery[J]. J Mol Liq, 2020, 310:113193. |
69 | YANG X Z, BAI Y R, LI Q, et al. Preparation and adsorption properties of MCM-41 with novel Gemini ionic liquid surfactants as template[J]. Materials, 2022, 15(8): 2780. |
70 | KACZEREWSKA O, SOUSA I, MARTINS R, et al. Gemini surfactant as a template agent for the synthesis of more eco-friendly silica nanocapsules[J]. Appl Sci-Basel, 2020, 10(22): 8085. |
71 | MCNULTY R C, PENSTON K, AMIN S S, et al. Self-assembled surfactant-polyoxovanadate soft materials as tuneable vanadium oxide cathode precursors for lithium-ion batteries[J]. Angew Chem Int Ed, 2023, 62: e202216066. |
72 | GHOSH R, ALAGARSAMY T. Synthesis of hierarchically porous HKUST-1 MOF: use of C14-6-14, a cationic Gemini surfactant, as soft-template[J]. Chem Select, 2020, 5(21): 6453-6469. |
73 | WANG X Q, ZHUANG W C, LUO X Z, et al. The inhibitive effects of Gemini imidazoline surfactants on copper in hydrochloric acid solution[J]. Int J Electrochem Sci, 2020, 15(5): 4338-4351. |
74 | DEYAB M A, MOHSEN Q. Inhibitory influence of cationic Gemini surfactant on the dissolution rate of N80 carbon steel in 15% HCl solution[J]. Sci Rep, 2021, 11(1): 10521. |
75 | ZHAO F, WANG S B, GUO J C. Experimental and molecular dynamics simulation study on the effects of the carbon chain length of Gemini surfactants on the inhibition of the acid-rock reaction rate[J]. Langmuir, 2021, 37(17): 5232-5241. |
76 | ZHONG S, LU D, LIU X L. Synthesis and antimicrobial activity studies of a new twin-tailed Gemini surfactant bearing piperazine heterocycle[J]. J Disper Sci Technol, 2012, 33(8): 1163-1166. |
77 | ZHONG S, GONG L J, ZHANG L L. Synthesis and properties of a new piperazine-based bicaudate Gemini surfactant[J]. J Disper Sci Technol, 2012, 33(7): 960-964. |
78 | 朱驯, 孔素东. 二氯-双(N,N-二甲基-N-十四烷基)-2-羟基-1,3-丙二铵的合成与性能研究[J]. 化学试剂, 2010, 32(4): 352-354, 358. |
ZHU X, KONG S D. Synthesis and study on properties of dichloro-bis(N,N-dimethyl-N-tetradecyl)-2-hydroxy-1,3-propylenediamine[J]. Chem Reag, 2010, 32(4): 352-354, 358. | |
79 | KOZIRÓG A, BRYCKI B. Monomeric and Gemini surfactants as antimicrobial agents-influence on environmental and reference strains[J]. Acta Biochim Pol, 2015, 62(4): 879-883. |
80 | MIR A, SHAHEEN A, ARIF R, et al. Binding interactions between tetracaine hydrochloride and biocompatible imidazolium based Gemini surfactants in aqueous solutions[J]. J Solution Chem, 2021, 50(4): 591-609. |
81 | RAHIMZADEH M, SADEGHIZADEH M, NAJAFI F, et al. Application of a novel pH-responsive gemini surfactant for delivery of curcumin molecules[J]. Mater Res Express, 2020, 7(6): 065403. |
82 | RAJPUT S M, MONDAL K, KUDDUSHI M, et al. Formation of hydrotropic drug/Gemini surfactant based catanionic vesicles as efficient nano drug delivery vehicles[J]. Colloid Interface Sci, 2020, 37: 100273. |
83 | 刘小勇, 颜如彩, 田博. 一种用于显示面板和半导体领域的水基型光刻胶剥离液: 中国, 109634071A[P]. 2019-01-23. |
LIU X Y, YAN R C, TIAN B. A water-based photoresist stripping solution for display panels and semiconductor fields: CN, 109634071A[P]. 2019-01-23. | |
84 | ANDREAS K, ANDREI H, GUENTER O, et al. Compositions for anti pattern collapse treatment comprising gemini additives: US, 10385295B2[P]. 2013-07-01. |
85 | JANG S, JEONG H, YUH M, et al. Effect of surfactant on package substrate in chemical mechanical planarization[J]. Int J Pr Eng Man-Gt, 2015, 2(1): 59-63. |
86 | LI Y L, LIU Y L, WANG C W, et al. Synergetic effect of chelating agent and nonionic surfactant for benzotriazoleremoval on post Cu-CMP cleaning[J]. J Semicond, 2017, 37(8): 086001. |
[1] | Dan WANG, Liang WANG. Gram-Scale Biginelli Reaction in Acidic Deep Eutectic Solvent [J]. Chinese Journal of Applied Chemistry, 2025, 42(4): 533-541. |
[2] | Wen-Hui ZHANG, Bo ZHANG, Jing GUAN, Wu-De YANG, Ya-Nan LI, Bing LIN, Chuan-Wen LEI. Application of Diversified Teaching Models in Organic Chemistry Courses for Pharmaceutical Related Majors Reform and Practice [J]. Chinese Journal of Applied Chemistry, 2025, 42(3): 429-439. |
[3] | Si-Wei CHEN, Li-Shi WANG, Huan-Feng JIANG. Research Advances of Anti-Aging Mechanism, Application and Detection of Nicotinamide Mononucleotide [J]. Chinese Journal of Applied Chemistry, 2025, 42(2): 168-181. |
[4] | Chun-Xiao MA, Ai-Zhen HE, Guang-Yuan YAO, Jie PAN, Jian-Xin CHEN. Research Progress in the Synthesis and Application of Maleic Anhydride Polymers [J]. Chinese Journal of Applied Chemistry, 2025, 42(1): 14-28. |
[5] | Liang XU, Jian-Peng LIU, Jian QING. Research Progress in Design, Synthesis and Properties of Organic Octupolar Two-Photon Excited Fluorescence Materials [J]. Chinese Journal of Applied Chemistry, 2025, 42(1): 29-41. |
[6] | Hong LI, De-Wen SUN. Kinetic Fabrication Strategy of Single Plumber′s Nightmare Network Mesostructure of Block Copolymers [J]. Chinese Journal of Applied Chemistry, 2024, 41(8): 1107-1115. |
[7] | Ling-Dong LI, Song-Wei ZHANG, Wei-Lun ZHANG, Peng-Fei LIU, Jiang-Jiming YU, Hao ZHOU. Synthesis of Side Chain Derived Quaternary Ammonium N-Chloramines for Antibacterial Applications [J]. Chinese Journal of Applied Chemistry, 2024, 41(7): 966-975. |
[8] | Yu-Fang LIU, Cai-Hong ZHANG, Mao-Sen YUAN. The Greening Improvement of Wittig Reaction Experiment [J]. Chinese Journal of Applied Chemistry, 2024, 41(4): 586-592. |
[9] | Zi-Jun PANG, Zhi QIN, A-Cong CHEN, Xiang-Hong GUAN, Geng-Rui WEI, Ze-Min LI, Hua HUANG, Chao-Hai WEI. Recent Advances in Functional Materials for Pollutant Removal from Sewage Wastewater: Scaling Effects of Elemental Substances‑Synthetic Modification‑Process Engineering [J]. Chinese Journal of Applied Chemistry, 2024, 41(2): 190-216. |
[10] | Hui-Lin YI. Research Progress on the Synthesis of Organic Peroxide in Microreactor [J]. Chinese Journal of Applied Chemistry, 2024, 41(11): 1535-1551. |
[11] | Ming-Yu LIU, Jing-Wei DAI. Hydrogels: Exploring Innovative Materials for the Future of Medicine [J]. Chinese Journal of Applied Chemistry, 2024, 41(10): 1511-1518. |
[12] | Er-Gui LUO, Tao TANG, Yi WANG, Jun-Ming ZHANG, Yu-Hong CHANG, Tian-Jun HU, Jian-Feng JIA. Progress on Tuning the Geometric and Electronic Structure of Precious Metal Catalysts for Hydrogen Peroxide Production via Two-Electron Oxygen Reduction [J]. Chinese Journal of Applied Chemistry, 2023, 40(8): 1063-1076. |
[13] | Jia-Zheng LI, Shu-Zhong HE. Research Progress of Total Synthesis of Polygalolides [J]. Chinese Journal of Applied Chemistry, 2023, 40(5): 615-624. |
[14] | Zhen-Bang LIU, Shuo ZHANG, Yu BAO, Ying-Ming MA, Wei-Qi LIANG, Wei WANG, Ying HE, Li NIU. Progress of Application Research on Cheminformatics in Deep Learning [J]. Chinese Journal of Applied Chemistry, 2023, 40(3): 360-373. |
[15] | Yu-Zhu CHEN, Si-Si LIU, Meng-Meng ZHANG, Xiang-De LIN, Dong-Dong ZENG. Polyurethane Dressing Based on Antibacterial Chitosan/Carboxymethyl Cellulose Composite Drug Coating [J]. Chinese Journal of Applied Chemistry, 2023, 40(2): 252-260. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 74
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 115
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||