Chinese Journal of Applied Chemistry ›› 2025, Vol. 42 ›› Issue (1): 14-28.DOI: 10.19894/j.issn.1000-0518.240244
• Review • Previous Articles Next Articles
Chun-Xiao MA1, Ai-Zhen HE2, Guang-Yuan YAO2(), Jie PAN1, Jian-Xin CHEN3
Received:
2024-10-22
Accepted:
2024-11-13
Published:
2025-01-01
Online:
2025-01-24
Contact:
Guang-Yuan YAO
About author:
yaogy@cnooc.com.cnSupported by:
CLC Number:
Chun-Xiao MA, Ai-Zhen HE, Guang-Yuan YAO, Jie PAN, Jian-Xin CHEN. Research Progress in the Synthesis and Application of Maleic Anhydride Polymers[J]. Chinese Journal of Applied Chemistry, 2025, 42(1): 14-28.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.240244
Catalyst | Initiator | Reaction temperature/℃ | Reaction time/h | Product performance | Ref. |
---|---|---|---|---|---|
Fe(NH4)2(SO4)2·6H2O,V2O5 | 30% H2O2 | 90 | 2 | Mw=1 072,Scale Inhibition=60.3% | [ |
NH4Fe(SO4)2 | 30% H2O2 | 100 | / | Scale inhibition>90% | [ |
NH4Fe(SO4)2 | 30% H2O2 | 100 | 1 | Scale inhibition>90% | [ |
Mixtures of Fe2+,Cu2+and M oxides | 30% H2O2 | 105 | 4~5 | Scale inhibition>40% | [ |
Polyvalent metal ion | H2O2 | 100 | 1 | Conversion ratio>80% | [ |
Mixed transition metal ions M2+ | 30% H2O2 | 105~115 | 3.5~4 | Relative molecular mass>600 | [ |
Transition metal ion | 30% H2O2 | 100 | 4 | Bromine value<150 mg/g Scale inhibition rate after compounding with HEDP>90% | [ |
NH4Fe(SO4)2 mixtures with metal oxides M x O y | 30% H2O2 | 95 | 2 | Scale inhibition>90% | [ |
(NH?)?SO? and metal ion complexes | 30% H2O2 | 95 | 3 | Scale inhibition=99.61% | [ |
Table 1 Summary of the main methods used to synthesize polymaleic acid using metal compounds as catalysts
Catalyst | Initiator | Reaction temperature/℃ | Reaction time/h | Product performance | Ref. |
---|---|---|---|---|---|
Fe(NH4)2(SO4)2·6H2O,V2O5 | 30% H2O2 | 90 | 2 | Mw=1 072,Scale Inhibition=60.3% | [ |
NH4Fe(SO4)2 | 30% H2O2 | 100 | / | Scale inhibition>90% | [ |
NH4Fe(SO4)2 | 30% H2O2 | 100 | 1 | Scale inhibition>90% | [ |
Mixtures of Fe2+,Cu2+and M oxides | 30% H2O2 | 105 | 4~5 | Scale inhibition>40% | [ |
Polyvalent metal ion | H2O2 | 100 | 1 | Conversion ratio>80% | [ |
Mixed transition metal ions M2+ | 30% H2O2 | 105~115 | 3.5~4 | Relative molecular mass>600 | [ |
Transition metal ion | 30% H2O2 | 100 | 4 | Bromine value<150 mg/g Scale inhibition rate after compounding with HEDP>90% | [ |
NH4Fe(SO4)2 mixtures with metal oxides M x O y | 30% H2O2 | 95 | 2 | Scale inhibition>90% | [ |
(NH?)?SO? and metal ion complexes | 30% H2O2 | 95 | 3 | Scale inhibition=99.61% | [ |
Fig.4 (A) Schematic diagram of SMA synthesis and alkaline hydrolysis[37]; (B) Synthesis of BA-co-MA, schematic diagram of BA-co-MA modified PF[46]; (C) Schematic of the synthesis of magnetic hollow polymer particles[53]
Fig.5 (A) Comparison of scale inhibition performance of FS and other corrosion inhibitors on calcium carbonate scale[58];(B) SEM images of CaCO3 scale growth after blanking and adding different amounts of scale inhibitor[59]; (C) Comparison of corrosion inhibition performance between FS and other corrosion inhibitors[58]
Anti-wrinkle finishing agents | Advantages | Disadvantages | Ref. |
---|---|---|---|
C5H10N2O5(DMDHEU) | Low cost and good durable pressing performance | Formaldehyde vapors are released from treated fabrics | [ |
C8H10O8(BTCA) | Good durable press performance | High cost, Significant strength loss | [ |
AA-MA | Dry wrinkle recovery angle comparable to DMDHEU | Do not have as good tensile strengths and whiteness as the DMDHEU | [ |
AA-MA | The treated fabrics showed satisfying WRA and good Washing durability, after washing 20 times, the WRA decreased by 17.7(°) | At the laboratory stage | [ |
MA and NaH2PO2 | Excellent fabric strength retention, formaldehyde-free, low cost, odor-free | At the laboratory stage | [ |
Table 2 Advantages and disadvantages of anti-wrinkle finishing agents
Anti-wrinkle finishing agents | Advantages | Disadvantages | Ref. |
---|---|---|---|
C5H10N2O5(DMDHEU) | Low cost and good durable pressing performance | Formaldehyde vapors are released from treated fabrics | [ |
C8H10O8(BTCA) | Good durable press performance | High cost, Significant strength loss | [ |
AA-MA | Dry wrinkle recovery angle comparable to DMDHEU | Do not have as good tensile strengths and whiteness as the DMDHEU | [ |
AA-MA | The treated fabrics showed satisfying WRA and good Washing durability, after washing 20 times, the WRA decreased by 17.7(°) | At the laboratory stage | [ |
MA and NaH2PO2 | Excellent fabric strength retention, formaldehyde-free, low cost, odor-free | At the laboratory stage | [ |
Fig.6 (A) HPMA separation of apatite and dolomite process principle[71]; (B) A conceivable adsorption model of HPMA and NaOl on the apatite and calcite surfaces[72]
1 | NAGARAJA A, JALAGERI M D, PUTTAIAHGOWDA Y M, et al. A review on various maleic anhydride antimicrobial polymers[J]. J Microbiol Methods, 2019, 163: 105650. |
2 | 严莲荷. 水处理药剂及配方手册[M]. 北京: 中国石化出版社, 2004(1): 177-178. |
YAN L H. The handbook of water treatment agents & formulations[M]. Beijing: China Petrochemical Press, 2004(1): 177-178. | |
3 | LANG J L, PAVELICH W A, CLAREY H D. Homopolymerization of maleic anhydride. Ⅰ. preparation of the polymer[J]. J Polym Sci, Part A, 2010, 1(4): 1123-1136. |
4 | AL-ROOMI Y M, HUSSAIN K F. Homo-oligomerization of maleic anhydride in nonpolar solvents: a kinetic study of deviations from nonlinear behavior[J]. J Appl Polym Sci, 2006, 102(4): 3404-3412. |
5 | 汪祖模, 徐玉珮, 徐国强, 等. 水质稳定剂-水解聚马来酸酐[J]. 化学世界, 1981(7): 6-9. |
WANG Z M, XU Y P, XU G Q, et al. Wter quality stabilizer-hydrolyzed polymaleic anhydride[J]. Chem World, 1981(7): 6-9. | |
6 | 徐华, 唐炳涛, 袁剑鹏, 等. 有机溶剂法合成聚马来酸酐:聚合残液的分析与循环利用[J]. 精细化工, 2010, 27(4): 409-412. |
XU H, TANG B T, YUAN J P, et al. Synthesis of polymaleic anhydride by organic solvent method analysis and recycling of polymerization residue[J]. Fine Chem, 2010, 27(4): 409-412. | |
7 | SHEN Z H, LI J S, XU K, et al. The effect of synthesized hydrolyzed polymaleic anhydride (HPMA) on the crystal of calcium carbonate[J]. Desalination, 2011, 284: 238-244. |
8 | DENG Y, TANG B T, ZHAO H J, et al. Dyeing method and properties of polymaleic acid dyes on cotton[J]. Color Technol, 2013, 129(2): 144-149. |
9 | XU H, TANG B T, ZHANG S F. Synthesis and dyeing performance of a novel polycarboxylic acid azo dye[J]. Chin Chem Lett, 2010, 22(4): 424-426. |
10 | REGELl W, SCHNEIDER C. Poly(maleic anhydride)-synthesis and proof of structure[J]. Macromol Chem Phys, 2010, 182(1): 237-242. |
11 | BENBAKHTI ABACHIR-BEY T. Synthesis and characterization of maleic acid polymer for use as scale deposits inhibitors[J]. J Appl Polym Sci, 2010, 116(5): 3095-3102. |
12 | CHEN D Z, YANG C Q, QIU X Q. Aqueous polymerization of maleic acid and cross-linking of cotton cellulose by poly(maleic acid)[J]. Ind Eng Chem Res, 2005, 44(21): 7921-7927. |
13 | 任春莲, 张建波, 王炳, 等. 聚马来酸和聚马来酸酐的合成及抗皱整理[J]. 印染, 2007(16): 23-26. |
REN C L, ZHANG J B, WANG B, et al. Synthesis of polymaleic acid and polymaleic anhydride and their durable press finish[J]. Dyeing Finish, 2007(16): 23-26. | |
14 | 金胜男. 聚马来酸的合成及其在真丝抗皱整理中的应用[D]. 苏州: 苏州大学, 2009. |
JIN S N. Synthesize polymerization of maleic acid and apply to silk fabric as an anti-crease finishing agent[D]. Suzhou: Soochow University, 2009. | |
15 | 刘凯, 吴志康, 刘建平. 水解聚马来酸酐合成工艺研究[J]. 盐科学与化工, 2021, 50(9): 24-27. |
LIU K, WU Z K, LIU J P. Study on the synthesis process of hydrolyzed polymaleic anhydride[J]. J Salt Sci Chem Ind, 2021, 50(9): 24-27. | |
16 | 沈炫东, 赵邦蓉. 聚马来酸阻垢性能的研究[J]. 北京化工大学学报(自然科学版), 1999(3): 64-66. |
SHEN X D, ZHAO B R. Study on the efficiency of scale inhibition action of poly maleic acid[J]. J Beijing Univ Chem Technol (Nat Sci Ed), 1999(3): 64-66. | |
17 | 靳通收, 张伏生, 马艳然, 等. 水中一步合成水解聚马来酸酐的洁净方法[J]. 化学世界, 2005(6): 336-337, 361. |
JIN T S, ZHANG F S, MA Y R, et al. A clean one-pot method for synthesis of hydrolyzed polymaleic anhydride in aqueous media[J]. Chem World, 2005(6): 336-337, 361. | |
18 | 徐景峰, 傅春霞. 水解聚马来酸酐的合成[J]. 广东化工, 2013, 40(12): 71-72. |
XU J F, FU C X. New method for synthesis of hydrolyzed polymaleic anhydride[J]. Guangdong Chem Ind, 2013, 40(12): 71-72. | |
19 | 王春华, 王江, 李宁, 等. 聚马来酸的合成研究[J]. 化学与粘合, 2001(3): 115-116. |
WANG C H, WANG J, LI N, et al. Synthesis of polymaleic acid[J]. Chem Adhes, 2001(3): 115-116. | |
20 | 刘祥, 李谦定. 一种合成水解聚马来酸的新方法[J]. 工业水处理, 2000(4): 22-24. |
LIU X, LI Q D. A new method for synthesis of hydrolyzed polymaleic acid[J]. Ind Water Treat, 2000(4): 22-24. | |
21 | 马涛, 张贵才, 葛际江, 等. 聚马来酸水相合成及防垢性能[J]. 精细化工, 2004(3): 209-212. |
MA T, ZHANG G C, GE J J, et al. Synthesis of polymaleic acid in water and evaluation of its scale inhibitory action[J]. Fine Chem, 2004(3): 209-212. | |
22 | 王庆华, 王伟华, 常瑞卿. 水解聚马来酸酐绿色合成及阻垢性能研究[J]. 包钢科技, 2010, 36(S1): 62-64. |
WANG Q H, WANG W H, CHANG R Q. Study on green synthesis and scale inhibition performance of hydrolyzed polymaleic anhydride[J]. Sci Technol Baotou Steel, 2010, 36(S1): 62-64. | |
23 | 张洪利. 低膦水解聚马来酸酐阻垢剂合成研究[J]. 工业水处理, 2010, 30(9): 56-59. |
ZHANG H L. Synthesis of low phosphine hydrolysis polymaleic anhydride used as scale inhibitor[J]. Ind Water Treat, 2010, 30(9): 56-59. | |
24 | 俞马宏, 马卫华, 钟秦, 等. 羟基自由基引发的马来酸酐聚合反应机理AM1研究[J]. 分子科学学报, 2004(1): 33-37. |
YU M H, MA W H, ZHONG Q, et al. AM1 study on polymerization reaction mechanism of maleic anhydride induced by hydroxyl radical[J]. J Mol Sci, 2004(1): 33-37. | |
25 | 王冶维, 刘沛源, 张兆奎, 等. 用连续CO2激光诱导马来酸酐的聚合[J]. 应用激光, 1983(4): 1-4. |
WANG Y W, LIU P Y, ZHANG Z K, et al. The induced polymerization of maleic anhydride by using CO2 laser[J]. Appl Laser, 1983(4): 1-4. | |
26 | 路建美, 朱秀林, 朱健, 等. 马来酸酐的微波固相聚合研究[J]. 高分子材料科学与工程, 1999(1): 159-161. |
LU J M, ZHU X L, ZHU J, et al. Study of microwave solid-state polymerization on maleic anhydride[J]. Polym Mater Sci Eng, 1999(1): 159-161. | |
27 | AL-ROOMI M Y, HUSSAIN F K. Novel one-pot microwave synthesis of maleic anhydride based mineral scale inhibitors and their application[J]. King Saud Univ Eng Sci J, 2023, 35(7): 442-449. |
28 | 张广清. 等离子体引发聚合制备聚马来酸的研究[D]. 天津: 河北工业大学, 2005. |
ZHANG G Q. Preparation of polymaleic acid by plasma-initiated polymerization[D]. Tianjin: Hebei University of Technology, 2005. | |
29 | RIVAS B L, CANESSA G S, POOLEY S A, et al. Copolymerization without initiator-6. ethyleneimine and maleic anhydride[J]. Eur Polym J, 1985, 21(11): 939-942. |
30 | NOSSEIR M H, DOSS N L, TAUFIK S Y. Structure and properties of p-carboxysuccinanilic polyester resins[J]. J Appl Polym Sci, 1988, 35(1): 75-83. |
31 | YAMAMOTO T, SEITA T. Non-conjugated cyclic dienes and maleic anhydride co-polymers, and derivatives for base resin of deep UV resist[J]. J Photopolym Sci Technol, 1994, 7(1): 141-149. |
32 | ABDEL-AZIM A, NASR E, FARHAT M. Unsaturated polyester for large castings[J]. Polym J, 1994, 26: 423-429. |
33 | LU J, ZHU X, JIAN Z, et al. Microwave radiation solid-state copolymerization in binary maleic anhydride-dibenzyl maleate systems[J]. J Appl Polym Sci, 2015, 66(1): 129-133. |
34 | QIU G M, ZHU B K, XU Y Y, et al.Synthesis of ultrahigh molecular weight poly(styrene-alt-maleic anhydride) in supercritical carbon dioxide[J]. Macromolecules, 2006, 39(9): 3231-3237. |
35 | LI S, CAI L, CUI D. Lewis acids activated spontaneous alternating copolymerization of maleic anhydride and styrene derivatives[J]. Chem Asian J, 2023, 18(4): 1-5. |
36 | LUO J, CHENG D, LI M, et al. RAFT copolymerization of styrene and maleic anhydride with addition of ascorbic acid at ambient temperature[J]. Adv Polym Technol, 2020, 2020(1): 695234. |
37 | RAI R, TIWARI R, VERMA D, et al. Ionic liquid-supported single-sodium-ion-conducting styrene-maleic anhydride copolymer for energy storage devices[J]. Energy Technol-Ger, 2024, 12(11): 2400801. |
38 | QI H Y, LIANG C X, DU L H, et al. Cross-linking mechanism of the butadiene-maleic anhydride copolymerization[J]. ACS Appl Polym Mater, 2024, 5(8): 1-9. |
39 | 房江华, 杨科芳. Fe(acac)3-Al(i-Bu)3催化马来酸酐与异戊二烯共聚合研究[J]. 高分子材料科学与工程, 2006(1): 36-39. |
FANG J H, YANG K F. The Copolymerization of maleic anhydride and isoprene with iron acetylacetonate and triisobutylaluminum[J]. Polym Mater Sci Eng, 2006(1): 36-39. | |
40 | 孙应发. 沉淀聚合合成高相对分子质量苯乙烯-马来酸酐共聚物及马来酸酐共聚物微球[D]. 北京: 北京化工大学, 2010. |
SUN Y F. Synthesis of high molecular weight poly(styrene-co-maleic anhydride) and copolymers including maleic anhydride microspheres by precipitation[D]. Beijing: Beijing University of Chemical Technology, 2010. | |
41 | SHU H Y, SONG C T, YANG L, et al. Self-stabilized precipitation polymerization of vinyl chloride and maleic anhydride[J]. Ind Eng Chem Res, 2023, 62(8): 3612-3621. |
42 | 祁天, 倪才华. 聚α-C14烯烃/酯类润滑油基础油合成和性能研究[J]. 润滑与密封, 2019, 44(11): 90-93. |
QI T, NI C H. Synthesis and properties study of poly-α-C14 olefin/ester lubricating base oil[J]. Lubrication Eng, 2019, 44(11): 90-93. | |
43 | 张杏梅, 党海燕, 陈茎, 等. 硫化环丙烯与马来酸酐共聚制备聚硫代碳酸酯工艺研究[J]. 化工新型材料, 2019, 47(8): 84-87, 93. |
ZHANG X M, DANG H Y,CHEN J, et al. Study on the preparation of polythiocarbonate by copolymerization of propylene sulfide and maleic anhydride[J]. New Chem Mater, 2019, 47(8): 84-87, 93. | |
44 | YILMAZ E, ERENLER M F, BOZTUG A. Synthesis and modification of amine-terminated maleic anhydride-butyl acrylate copolymer and investigation of adsorption properties for cadmium(Ⅱ) ions (Cd2+)[J]. J Mol Struct, 2020, 1222: 128924. |
45 | 陈星任, 陈领河, 黄富海, 等. 丙烯酸羟乙酯与马来酸酐的共聚及表征[J]. 高分子通报, 2023, 36(12): 1699-1705. |
CHEN X R, CHEN L H, HUANG F H, et al. Copolymerization and characterization of hydroxyethyl acrylate and maleic anhydride[J]. Polym Bull, 2023, 36(12): 1699-1705. | |
46 | MIAO W, CHENG W, WANG Z, et al. Influence of n-butyl acrylate and maleic anhydride copolymer on the structure and properties of phenolic resin[J]. Mater Today Commun, 2020, 23: 100879. |
47 | SHOHRATY F, MOGHADAM P N, FAREGHI A R, et al. Synthesis and characterization of new pH-sensitive hydrogels based on poly(glycidyl methacrylate-co-maleic anhydride)[J]. Adv Polym Technol, 2016, 37(1): 120-125. |
48 | KARCHOUBI F, BAGHBAN SALEHI M, PANAHI R, et al. Performance improvement of a modified copolymer as an antiscalant and microbial growth inhibitor[J]. Int J Polym Anal Charact, 2023, 28(4): 325-340. |
49 | WANG Q, ZHU X, ZHU P, et al. N-Halamine antibacterial cellulose fabrics functionalized with copoly(acrylamide-maleic anhydride)[J]. Fiber Polym, 2019, 20(5): 906-912. |
50 | NAMAZI H, POORESMAEIL M, SALEHI R. Construction of a new dual-drug delivery system based on stimuli-responsive co-polymer functionalized D-mannose for chemotherapy of breast cancer[J]. Eur Polym J, 2023, 188: 111958. |
51 | 张行荣, 唐炳涛, 张淑芬. 马来酸酐-丙烯酰胺共聚物的合成及表征[J]. 高分子材料科学与工程, 2011, 27(3): 1-4. |
ZHANG X R, TANG B T, ZHANG S F. Synthesis and characterization of MA-AAM copolymer[J]. Polym Mater Sci Eng, 2011, 27(3): 1-4. | |
52 | 杨科芳, 房江华, 高连勋. Fe(acac)3-Al(i-Bu)3对马来酸酐与茴香脑共聚的催化性能[J]. 催化学报, 2004(1): 23-26. |
YANG K F, FANG J H, GAO L X. Catalytic performance of Fe(acac)3-Al(i-Bu)3 for copolymerization of maleic anhydride and anethole[J]. Chin J Catal, 2004(1): 23-26. | |
53 | RAZA S, YONG X, RAZA M, et al. Synthesis of biomass trans-anethole based magnetic hollow polymer particles and their applications as renewable adsorbent[J]. Chem Eng J, 2018, 352: 20-28. |
54 | 马慧婷, 杨莹, 李丽华, 等. 光引发聚合制备P(AA-MA)高吸水性树脂及性能研究[J]. 化工新型材料, 2024, 52(5): 181-185 |
MA H T, YANG Y, LI L H, et al. Preparation and performance of photopolymerized P(AA-MA) superabsorbent resin[J]. New Chem Mater, 2024, 52(5): 181-185. | |
55 | LI C J, ZHANG C Y, ZHANG W P. The inhibitory effects of four inhibitors on the solution adsorption of CaCO3 on Fe3O4 and Fe2O3 surfaces[J]. Sci Rep, 2019, 9(1): 13724. |
56 | 郭莲梅, 唐建华, 龙军, 等. 绿色阻垢剂水解聚马来酸酐的合成及其复配物性能研究[J]. 化学工程师, 2015, 29(12): 57-59. |
GUO L M, TANG J H, LONG J, et al. Synthesis of green scale inhibitor hydrolytic polymaleic anhydride and the performance of it's compound formulation[J]. Chem Eng, 2015, 29(12): 57-59. | |
57 | YANG H Y, LI Y R, WEI W, et al. Preparation and application of new polycarboxylic acid for scale inhibition[J]. J Phys: Conference Series, 2023, 2430(1): 1-6. |
58 | HTET T T, ZENG D F. Study on the performance evaluation of phosphorus-free composite corrosion and scale inhibitor[J]. Pol J Environ Stud, 2022, 31: 4659-4667. |
59 | CUI K X, LI C X, YAO B, et al. Synthesis and evaluation of an environment-friendly terpolymer CaCO3 scale inhibitor for oilfield produced water with better salt and temperature resistance[J]. J Appl Polym Sci, 2020, 137(11): 48460. |
60 | JIN J T, LI M Y, GUAN Y T. Mixture design of an environmentally friendly scale and corrosion inhibitor in reclaimed wastewater for cooling systems[J]. Desalin Water Treat, 2016, 57(50): 23556-23570. |
61 | 马瑞廷, 姜承志, 丁保宏. 水解聚马来酸酐缓蚀分散性能的研究[J]. 腐蚀科学与防护技术, 2004(2): 87-88, 109. |
MA R T, JIANG C Z, DING B H. Dispersal and corrosion inhibition performances of a hydrolytic polymerized maleic anhydride[J]. Corros Sci Prot Technol, 2004(2): 87-88, 109. | |
62 | MANSOURI T, GOLCHIN A, KOUHESTANI H. Assessing the phytoavailability of arsenic and phosphorus to corn plant after the addition of an acrylic copolymer to polluted soils[J]. Environ Monit Assess, 2017, 189(9): 450. |
63 | CAO Y R, ZHANG S R, WANG G Y, et al. Enhancing the soil heavy metals removal efficiency by adding HPMA and PBTCA along with plant washing agents[J]. J Hazard Mater, 2017, 339: 33-42. |
64 | 董佳伟, 刘雪虎, 黎璋焰, 等. 聚马来酸酐树脂的制备及其对水中环丙沙星的吸附行为和机制[J]. 环境科学学报, 2021, 41(2): 548-556. |
DONG J W, LIU X H, LI Z Y, et al. Synthesis of a polymaleic anhydride based resin, and its adsorption characteristics and mechanisms for removal of ciprofloxacin from aqueous solutions[J]. Acta Sci Circumstantiae, 2021, 41(2): 548-556. | |
65 | IBRAHIM G A, SALEH S A, ELSHARMA M E, et al. Chitosan-g-maleic acid for effective removal of copper and nickel ions from their solutions[J]. Int J Biol Macromol, 2018, 121: 1287-1294 |
66 | DINARI M, ATABAKI F, PAHNAVAR Z, et al. Adsorptive removal properties of bivalent cadmium from aqueous solution using porous poly(N-2-methyl-4 nitrophenyl maleimide-maleic anhydride-methyl methacrylate) terpolymers[J]. J Environ Chem Eng, 2020, 8(6):104560. |
67 | UDOMKICHDECHA W, KITTINAOVARAT S, THANASOONTHORNROEK U, et al. Acrylic and maleic acids in nonformaldehyde durable press finishing of cotton fabric[J]. Text Res J, 2003, 73(5): 401-406. |
68 | LIANG T, YAN K L, ZHAO T, et al. Synthesis of a low-molecular-weight copolymer by maleic acid and acrylic acid and its application for the functional modification of cellulose[J]. Cellulose, 2020, 27: 1-11. |
69 | PENG H T, YANG Q C, WANG S Y. Nonformaldehyde durable press finishing of cotton fabrics using the combination of maleic acid and sodium hypophosphite[J]. Carbohydr Polym, 2012, 87(1): 491-499. |
70 | DENG Y, TANG B T, MA W, et al. Synthesis of a new kind of red polymaleic acid dyes with high fixation on cotton[J]. Adv Mater Res, 2012, 1914(550/551/552/553): 3227-3231. |
71 | YANG B, YIN W Z, ZHU Z L, et al. Differential adsorption of hydrolytic polymaleic anhydride as an eco-friendly depressant for the selective flotation of apatite from dolomite[J]. Sep Purif Technol, 2021, 256: 117803. |
72 | WANG L, HUANG H, XUE N, et al. Selective flotation separation of apatite from calcite using hydrolytic polymaleic anhydride as an eco-friendly and efficient depressant[J]. Chem Eng Sci, 2022, 251: 117463. |
73 | CHEN C, HU Y H, ZHU H L, et al. Inhibition performance and adsorption of polycarboxylic acids in calcite flotation[J]. Miner Eng, 2019, 133: 60-68. |
74 | 肖刚. 国内顺酐现状及发展趋势[J]. 聚酯工业, 2023, 36(3): 13-17. |
XIAO G. The current situation and development trend of Maleic anhydride in China[J]. Polyester Ind, 2023, 36(3): 13-17. | |
75 | AHAMAD A, LUBIC M, MOHAN A A, et al. Synthesis of unsaturated polyester resin-effect of anhydride composition[J]. Des Monomers Polym, 2001, 4(3): 260-267. |
76 | YAN Y N, WEN B Y. Study on interfacial compatibilizing effect of PB grafts on PB/GNP thermally conductive composites[J]. Polym Compos, 2024, 45(11): 10301-10313. |
77 | SCHWARTZ S A, MCCULLOUGH M J. Orientation development and properties in styrene/maleic anhydride copolymers[J]. J Plast Film Sheeting, 1992, 8(4): 289-301. |
78 | JIN T, ZENG H Y, HUANG Y F, et al. Synthesis of fully biomass high-performance wood adhesives from xylitol and maleic anhydride[J]. ACS Sustainable Chem Eng, 2023, 11(32): 11781-11789. |
79 | MA Y, SUN Q F, WANG Z Y, et al. Improved interfacial chemistry and enhanced high voltage-resistance capability of an in situ polymerized electrolyte for LiNi0.8Co0.15Al0.05O2-Li batteries[J]. J Mater Chem A, 2021, 9(6): 3597-3604. |
80 | ZHAO Y, ZHANG L Y, ZHANG S Y, et al. Maleic anhydride-modified xylanase and its application to the clarification of fruits juices[J]. Food Chem X, 2023, 19: 100830. |
81 | AGOSTONI C, CANANI R B, TAIT S F, et al Scientific opinion on the safety of “methyl vinyl ether-maleic anhydride copolymer” (chewing gum base ingredient) as a novel food ingredient[J]. EFSA J, 2013, 11(10): 3423. |
82 | LIU M Z, LIANG R, ZHAN F L, et al. Synthesis of a slow-release and superabsorbent nitrogen fertilizer and its properties[J]. Polym Adv Technol, 2006, 17(6): 430-438. |
83 | 赵春会. 聚马来酸梯度对隆子黑青稞生理特性及产量的影响[D]. 西藏: 西藏大学, 2021. |
ZHAO C H. Effects of polymaleic acid gradient on physiological characteristics and yield of longzi black barely[D]. Tibet: Tibet University, 2021. | |
84 | 李美茹, 刘存. 施用聚马来酸对棚室甜瓜品质的影响初探[J]. 安徽农业科学, 2009, 37(35): 17460-17461. |
LI M R, LIU C. Study on effect of polymaleic acid on melon quality in the plastic greenhouse[J]. J Anhui Agric Sci, 2009, 37(35): 17460-17461. | |
85 | 高春宁, 屈雪峰, 王东旭, 等. 一种油田注水地层保护剂及其制备方法与应用: 中国, 201310108426.4[P]. 2013-07-31. |
GAO C N, QU X F, WANG D X, et al. An oilfield water injection formation protectant and its preparation method and application: CN, 201310108426.4[P]. 2013-07-31. | |
86 | 秦升益, 王中学. 含水解聚马来酸酐的膨胀材料组合物及自悬浮支撑剂及其制备方法和应用: 中国, 201511021404.X[P]. 2017-07-07. |
QIN S Y, WANG Z X. Expansion material compositions containing hydrolyzed polymaleic anhydride and self-suspending proppants and methods of preparation and applications: CN, 201511021404.X[P]. 2017-07-07. | |
87 | BENNETT M T, PORTAL J, JEANNE-ROSE V, et al. Synthesis of model terpene-derived copolymers in supercritical carbon dioxide for cosmetic applications[J]. Eur Polym J, 2021, 157: 110621. |
88 | 冯浩杰. 水稻种植条件下脱硫石膏改良碱土的研究[D]. 泰安: 山东农业大学, 2016. |
FENG H J. Improving solonetz with desulfurization gypsum under rice cultivation condition[D]. Tai′an: Shandong Agricultural University, 2016. | |
89 | 田野, 刘善江, 冯浩杰. 脱硫石膏配施聚马来酸酐对碱化土壤的改良效果研究[J]. 中国土壤与肥料, 2018(1): 114-120. |
TIAN Y, LIU S J, FENG H J. Effect of applying the desulfurization gypsum combined with polymaleic anhydride on alkali soil improvement[J]. Soil Fert Sci China, 2018(1): 114-120. | |
90 | CAO C, LI Y, FENG Y Y, et al. A sulfonimide-based alternating copolymer as a single-ion polymer electrolyte for high-performance lithium-ion batteries[J]. J Mater Chem A, 2017, 5(43): 22519-22526. |
[1] | Zi-Jun PANG, Zhi QIN, A-Cong CHEN, Xiang-Hong GUAN, Geng-Rui WEI, Ze-Min LI, Hua HUANG, Chao-Hai WEI. Recent Advances in Functional Materials for Pollutant Removal from Sewage Wastewater: Scaling Effects of Elemental Substances‑Synthetic Modification‑Process Engineering [J]. Chinese Journal of Applied Chemistry, 2024, 41(2): 190-216. |
[2] | Ming-Yu LIU, Jing-Wei DAI. Hydrogels: Exploring Innovative Materials for the Future of Medicine [J]. Chinese Journal of Applied Chemistry, 2024, 41(10): 1511-1518. |
[3] | LIU Yu-Ting, SUN Jia-Xi, YIN Da-Wei. Research Progress on the Synthesis and Application of Ferroncene-based Polymers [J]. Chinese Journal of Applied Chemistry, 2021, 38(4): 343-366. |
[4] | XIE Zhi-Qi, ZHANG Ting, LI Ying-Wei, WANG Zhou-Jun, DAI Fei, ZHANG Rui-Rui, LIU Rui-Xia. Effect of Synthesis Conditions of Vanadium Phosphorus Oxygen (VPO) Catalyst on Catalytic Performance for Selective Oxidation of Butane [J]. Chinese Journal of Applied Chemistry, 2021, 38(4): 414-421. |
[5] | XU Feng, ZHANG Kun, YIN Feng-Qin, XU Fei, PANG Yu-Xuan, CHEN Shi-Ting. Research Progress in Preparation and Application of Anion Imprinted Polymers [J]. Chinese Journal of Applied Chemistry, 2021, 38(2): 123-135. |
[6] | Yu-Fan JI, Feng CAI, Hai-Feng YU. Research Progress on Photoswitchable Surface Topography of Liquid Crystalline Polymer [J]. Chinese Journal of Applied Chemistry, 2021, 38(10): 1226-1237. |
[7] | Long-Fei LUO, Yu-Jie LI, Zhi-Hao SHEN, Shi-Jun ZHENG, Xing-He FAN. Progress in Self⁃assembly and Photo⁃responsiveness of Thin Films of Azobenzene⁃Based Liquid Crystalline Block Copolymers [J]. Chinese Journal of Applied Chemistry, 2021, 38(10): 1238-1254. |
[8] | LI Wenjie, WANG Lixue, SUN Linghui, YOU Wei, ZHAO Yabin. Progress in Matrix-Assisted Laser Desorption Mass Spectrometry Imaging for Fingerprint Analysis [J]. Chinese Journal of Applied Chemistry, 2020, 37(10): 1137-1146. |
[9] | MA Hecheng,LIU Jianjun,YU Yingchun,ZUO Shengli. Research Progress in Preparation and Photocatalysis of Two-Dimensional Graphitic Carbon Nitride Nanosheets [J]. Chinese Journal of Applied Chemistry, 2019, 36(3): 259-268. |
[10] | MA Xiao, XU Chongying, XU Dongsheng, DING Yuqiang, JIN Chenggang, JI Peiyu. Synthesis and Application of Guanidinato Silicon Precursors [J]. Chinese Journal of Applied Chemistry, 2019, 36(10): 1179-1185. |
[11] | LI Jingling, FAN Jiangli, PENG Xiaojun. Research Progress on Preparation and Applications of Nanoparticles Based on Miniemulsion Polymerization [J]. Chinese Journal of Applied Chemistry, 2018, 35(9): 1026-1036. |
[12] | LI Na,LI Hui. Synthesis and Antitumor Activity of Hexahydro-1H-pyrrolo [3,4-d] Pyrimidine Derivatives [J]. Chinese Journal of Applied Chemistry, 2017, 34(5): 541-549. |
[13] | LI Linlin,DUAN Zunbin,ZHU Lijun,XIANG Yuzhi,XIA Daohong. Progress in Study and Application of Supramolecular System Based on β-Cyclodextrin [J]. Chinese Journal of Applied Chemistry, 2017, 34(2): 123-138. |
[14] | YANG Hongmei,XU Niusheng,YAO Wenbin,SHI Lei,LI Jinying,LIU Shuying. Research Progress on Interaction Between Small Ligands and Triplex DNA [J]. Chinese Journal of Applied Chemistry, 2016, 33(12): 1355-1365. |
[15] | HE Donghua1, TANG Anping1,2*, SHEN Jie1, XU Guorong1,2, LIU Lihua1,2, LING Yuling1,2. Progress in Lithium Vanadyl Phosphate as Electrode Materials for Lithium Ion Batteries [J]. Chinese Journal of Applied Chemistry, 2014, 31(10): 1115-1122. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||