Chinese Journal of Applied Chemistry ›› 2021, Vol. 38 ›› Issue (2): 123-135.DOI: 10.19894/j.issn.1000-0518.200220
• Review • Previous Articles Next Articles
XU Feng1, ZHANG Kun1, YIN Feng-Qin2*, XU Fei2, PANG Yu-Xuan2, CHEN Shi-Ting2
Received:
2020-07-24
Accepted:
2020-11-12
Published:
2021-02-01
Online:
2021-04-10
Supported by:
CLC Number:
XU Feng, ZHANG Kun, YIN Feng-Qin, XU Fei, PANG Yu-Xuan, CHEN Shi-Ting. Research Progress in Preparation and Application of Anion Imprinted Polymers[J]. Chinese Journal of Applied Chemistry, 2021, 38(2): 123-135.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.200220
[1] LU J, QIN Y, WU Y, et al. Recent advances in ion-imprinted membranes: separation and detection via ion-selective recognition[J]. Environ Sci Water Res Technol, 2019, 5(10): 1626-1653. [2] BELBRUNO J J. Molecularly imprinted polymers[J]. Chem Rev, 2019, 119(1): 94-119. [3] WULFF G, SARHAN A A. The use of polymers with enzyme-analogous structures for the resolution of racemates[J]. Angew Chem Int Ed, 1972, 11:341-346. [4] TAKAGISHI T, KLOTZ I M J B. Macromolecule-small molecule interactions; introduction of additional binding sites in polyethyleneimine by disulfide cross-linkages[J]. Biopolymers, 1972, 11(2): 483-491. [5] HUANG Y, WANG R. Review on fundamentals, preparations and applications of imprinted polymers[J]. Curr Org Chem, 2018, 22(16): 1600-1618. [6] MALIK M I, SHAIKH H, MUSTAFA G, et al. Recent applications of molecularly imprinted polymers in analytical chemistry[J]. Sep Purif Rev, 2018, 48(3): 179-219. [7] PINHEIRO S C, DESCALZO A B, RAIMUNDO I M, et al. Fluorescent ion-imprinted polymers for selective Cu(II) optosensing[J]. Anal Bioanal Chem, 2012, 402(10): 3253-3260. [8] HANDE P E, SAMUI A B, KULKARNI P S. Highly selective monitoring of metals by using ion-imprinted polymers[J]. Environ Sci Pollut Res, 2015, 22(10): 7375-7404. [9] SHAKERIAN F, KIM K-H, KWON E, et al. Advanced polymeric materials: synthesis and analytical application of ion imprinted polymers as selective sorbents for solid phase extraction of metal ions[J]. Trends Anal Chem, 2016, 83: 55-69. [10] LV X, LIU Y, ZHANG J, et al. Study on the adsorption behavior of glutaric acid modified Pb(Ⅱ) imprinted chitosan-based composite membrane to Pb(Ⅱ) in aqueous solution[J]. Mater Lett, 2019, 251(SEP.15): 172-175. [11] ZHOU Z, KONG D, ZHU H, et al. Preparation and adsorption characteristics of an ion-imprinted polymer for fast removal of Ni(II) ions from aqueous solution[J]. J Hazard Mater, 2018, 341: 355-364. [12] YUAN G, TU H, LIU J, et al. A novel ion-imprinted polymer induced by the glycylglycine modified metal-organic framework for the selective removal of Co(II) from aqueous solutions[J]. Chem Eng J, 2018, 333: 280-288. [13] ZHENG X, ZHANG Y, ZHANG F, et al. Dual-template docking oriented ionic imprinted bilayer mesoporous films with efficient recovery of neodymium and dysprosium[J]. J Hazard Mater, 2018, 353: 496-504. [14] LU J, WU Y, LIN X, et al. Anti-fouling and thermosensitive ion-imprinted nanocomposite membranes based on grapheme oxide and silicon dioxide for selectively separating europium ions[J]. J Hazard Mater, 2018, 353: 244-253. [15] 杨普, 曹慧, 徐斐, 等. 核壳型离子印迹聚合物的制备与应用[J]. 工业微生物, 2019, 49(5): 17-23. YANG P, CAO H, XU F, et al. Preparation and application of core-shell ion imprinted polymer[J]. Ind Microbiol, 2019, 49(5): 17-23. [16] YANG P, CAO H, MAI D, et al. A novel morphological ion imprinted polymers for selective solid phase extraction of Cd(II): preparation, adsorption properties and binding mechanism to Cd(II)[J]. React Funct Polym, 2020, 151: 104569-104578. [17] FU J, CHEN L, LI J, et al. Current status and challenges of ion imprinting[J]. J Mater Chem A, 2015, 3(26): 13598-13627. [18] PERERA R, ASHRAF S, MUELLER A. The binding of metal ions to molecularly-imprinted polymers[J]. Water Sci Technol, 2017, 75(7/8): 1643-1650. [19] WU X. Molecular imprinting for anion recognition in aqueous media[J]. Microchim Acta, 2011, 176(1/2): 23-47. [20] VILAR R N, BALLESTER P. Recognition of anions[J]. Springer Berlin, 2008, 129: 175-200. [21] SPELTINI A, SCALABRINI A, MARASCHI F, et al. Newest applications of molecularly imprinted polymers for extraction of contaminants from environmental and food matrices: a review[J]. Anal Chim Acta, 2017, 974:1-26. [22] JINADASA K K, PEÑA-VÁZQUEZ E, BERMEJO-BARRERA P, et al. New adsorbents based on imprinted polymers and composite nanomaterials for arsenic and mercury screening/speciation: a review[J]. Microchem J, 2020, 156: 104886-104894. [23] CHEN L, WANG X, LU W, et al. Molecular imprinting: perspectives and applications[J]. Chem Soc Rev, 2016, 45(8): 2137-2211. [24] 于劲松, 徐斐, 曹慧, 等. 电导率法筛选镉离子印迹聚合物功能单体[J]. 工业微生物, 2020, 50(3): 43-48. YU J S, XU F, CAO H, et al. Screening of functional monomers of cadmium ion imprinted polymer by conductivity method[J]. Ind Microbiol, 2020, 50(3): 43-48. [25] LANGTON M J, SERPELL C J, BEER P D. Anion recognition in water: recent advances from a supramolecular and macromolecular perspective[J]. Angew Chem Int Ed, 2016, 55(6): 1974-1987. [26] KONG D, ZHANG F, WANG K, et al. Fast removal of Cr(VI) from aqueous solution using Cr(VI)-imprinted polymer particles[J]. Ind Eng Chem Res, 2014, 53(11): 4434-4441. [27] LOU Z, HUANG M, CUI J, et al. Copolymers of vinylimidazolium-based ionic liquids and divinylbenzene for adsorption of TcO-4 or ReO-4[J]. Hydrometallurgy, 2019, 190: 105147-105155. [28] KHAN F, ARATSU F, KOBAYASHI S, et al. A simple strategy for robust preparation and characterisation of hydrogels derived from chitosan and amino functional monomers for biomedical applications[J]. J Mater Chem B, 2018, 6(31): 5115-5129. [29] VELEMPINI T, PILLAY K, MBIANDA X Y, et al. Epichlorohydrin crosslinked carboxymethyl cellulose-ethylenediamine imprinted polymer for the selective uptake of Cr(VI)[J]. Int J Biol Macromol, 2017, 101: 837-844. [30] SHEN H, SUN M, HU M, et al. Design and controllable synthesis of ethylenediamine-grafted ion imprinted magnetic polymers for highly selective adsorption to perchlorate[J]. RSC Adv, 2018, 8(52): 29928-29938. [31] BOYACI E, CAGIR A, SHAHWAN T, et al. Synthesis, characterization and application of a novel mercapto- and amine-bifunctionalized silica for speciation/sorption of inorganic arsenic prior to inductively coupled plasma mass spectrometric determination[J]. Talanta, 2011, 85(3): 1517-1525. [32] CHEN L, LIANG H, XING J. Synthesis of multidentate functional monomer for ion imprinting[J]. J Sep Sci, 2020, 43(7): 1356-1364. [33] FAN H T, SUN T, XU H B, et al. Removal of arsenic(V) from aqueous solutions using 3-[2-(2-aminoethylamino)ethylamino]propyl-trimethoxysilane functionalized silica gel adsorbent[J]. Desalination, 2011, 278(1/2/3): 238-243. [34] XING D Y, CHEN Y, ZHU J, et al. Fabrication of hydrolytically stable magnetic core-shell aminosilane nanocomposite for the adsorption of PFOS and PFOA[J]. Chemosphere, 2020, 251:126384-126393. [35] JANIK P, ZAWISZA B, TALIK E, et al. Selective adsorption and determination of hexavalent chromium ions using graphene oxide modified with amino silanes[J]. Microchim Acta, 2018, 185(2): 117. [36] SOTO R J, YANG L, SCHOENFISCH M H. Functionalized mesoporous silica via an aminosilane surfactant ion exchange reaction: controlled scaffold design and nitric oxide release[J]. ACS Appl Mater Interfaces, 2016, 8(3): 2220-2231. [37] HUANG R, MA X, LI X, et al. A novel ion-imprinted polymer based on graphene oxide-mesoporous silica nanosheet for fast and efficient removal of chromium (VI) from aqueous solution[J]. J Colloid Interface Sci, 2018, 514: 544-553. [38] FAN H T, FAN X, LI J, et al. Selective removal of arsenic(V) from aqueous solution using a surface-ion-imprinted amine-functionalized silica gel sorbent[J]. Ind Eng Chem Res, 2012, 51(14): 5216-5223. [39] HELLING S, SHINDE S, BROSSERON F, et al. Ultratrace enrichment of tyrosine phosphorylated peptides on an imprinted polymer[J]. Anal Chem, 2011, 83(5): 1862-1865. [40] BLAEK BREGOVIĆ V, BASARIĆ N, MLINARIĆ-MAJERSKI K. Anion binding with urea and thiourea derivatives[J]. Coord Chem Rev, 2015, 295: 80-124. [41] CHEN Y, LI D, BIE Z, et al. Coupling of phosphate-imprinted mesoporous silica nanoparticles-based selective enrichment with matrix-assisted laser desorption ionization-time-of-flight mass spectrometry for highly efficient analysis of protein phosphorylation[J]. Anal Chem, 2016, 88(2): 1447-1454. [42] KUGIMIYA A, TAKEI H. Selectivity and recovery performance of phosphate-selective molecularly imprinted polymer[J]. Anal Chim Acta, 2008, 606(2): 252-256. [43] ABU SAMAH N, MAT ROSLI N A, ABDUL MANAP A H, et al. Synthesis & characterization of ion imprinted polymer for arsenic removal from water: a value addition to the groundwater resources[J]. Chem Eng J, 2020, 394: 124900-124907. [44] SHINDE S, INCEL A, MANSOUR M, et al. Urea-based imprinted polymer hosts with switchable anion preference[J]. J Am Chem Soc, 2020, 142(26): 11404-11416. [45] SHINDE S, MANSOUR M, INCEL A, et al. High salt compatible oxyanion receptors by dual ion imprinting[J]. Chem Sci, 2020, 11(16): 4246-4250. [46] GAO B, CHA X, CHEN T, et al. Designing and Preparing of acid dye surface-imprinted material for effective removal of acid dyes from water[J]. J Environ Chem Eng, 2015, 3(1): 277-285. [47] URBANO B F, VILLENAS I, RIVAS B L, et al. Cationic polymer-TiO2 nanocomposite sorbent for arsenate removal[J]. Chem Eng J, 2015, 268: 362-370. [48] NAJIB N, CHRISTODOULATOS C. Removal of arsenic using functionalized cellulose nanofibrils from aqueous solutions[J]. J Hazard Mater, 2019, 367: 256-266. [49] GOGOI H, LEIVISKA T, RAMO J, et al. Production of aminated peat from branched polyethylenimine and glycidyltrimethylammonium chloride for sulphate removal from mining water[J]. Environ Res, 2019, 175:323-334. [50] HOSHINO Y, JIBIKI T, NAKAMOTO M, et al. Reversible pKa modulation of carboxylic acids in temperature-responsive nanoparticles through imprinted electrostatic interactions[J]. ACS Appl Mater Interfaces, 2018, 10(37): 31096-31105. [51] SHU X, SHEN L, WEI Y, et al. Synthesis of surface ion-imprinted magnetic microsphere for efficient sorption of perrhenate: a structural surrogate for pertechnetate[J]. J Mol Liq, 2015, 211:621-627. [52] XI Y, HUANG M, LUO X. Enhanced phosphate adsorption performance by innovative anion imprinted polymers with dual interaction[J]. Appl Surf Sci, 2019, 467/468:135-142. [53] GUO H, LIU Y, MA W, et al. Surface molecular imprinting on carbon microspheres for fast and selective adsorption of perfluorooctane sulfonate[J]. J Hazard Mater, 2018, 348:29-38. [54] REN Z, KONG D, WANG K, et al. Preparation and adsorption characteristics of an imprinted polymer for selective removal of Cr(VI) Ions from aqueous solutions[J]. J Mater Chem A, 2014, 2(42): 17952-17961. [55] TAGHIZADEH M, HASSANPOUR S. Selective adsorption of Cr(VI) ions from aqueous solutions using a Cr(VI)-imprinted polymer supported by magnetic multiwall carbon nanotubes[J]. Polymer, 2017, 132: 1-11. [56] JINADASA K K, PENA-VAZQUEZ E, BERMEJO-BARRERA P, et al. Ionic Imprinted polymer solid-phase extraction for inorganic arsenic selective pre-concentration in fishery products before high-performance liquid chromatography-inductively coupled plasma-mass spectrometry speciation[J]. J Chromatogr A, 2020, 1619: 460973-460982. [57] DONG Z, YUAN W, LI Y, et al. Radiation synthesis of crown ether functionalized microcrystalline cellulose as bifunctional adsorbent: a preliminary investigation on its application for removal of ReO-4 as analogue for TcO-4[J]. Radiat Phys Chem, 2019, 159: 147-153. [58] FANG L, MIN X, KANG R, et al. Development of an anion imprinted polymer for high and selective removal of arsenite from wastewater[J]. Sci Total Environ, 2018, 639: 110-117. [59] 康仁飞. 离子印迹聚合物的合成及其选择性去除水体中钴离子和亚砷酸根离子的性能研究[D]. 南昌:南昌航空大学, 2016. KANG R F. Synthesis of ion imprinted polymers and their selective removal of cobalt and arsenite ions in water[D]. Nanchang: Nanchang Hangkong University, 2016. [60] GOLKER K, OLSSON G D, NICHOLLS I A. The influence of a methyl substituent on molecularly imprinted polymer morphology and recognition-acrylic acid versus methacrylic acid[J]. Eur Polym J, 2017, 92: 137-149. [61] MUSTAFAI F A, BALOUCH A, ABDULLAH, et al. Microwave-assisted synthesis of imprinted polymer for selective removal of arsenic from drinking water by applying taguchi statistical method[J]. Eur Polym J, 2018, 109: 133-142. [62] ALIZADEH T, RASHEDI M. Synthesis of nano-sized arsenic-imprinted polymer and its use as As3+ selective ionophore in a potentiometric membrane electrode: part 1[J]. Anal Chim Acta, 2014, 843: 7-17. [63] ALIZADEH T, ATAYI K. Synthesis of hydrogen phosphate anion-imprinted polymer via emulsion polymerization and its use as the recognition element of graphene/graphite paste potentiometric electrode[J]. Mater Chem Phys, 2018, 209: 180-187. [64] LI G, ROW K H. Recent applications of molecularly imprinted polymers (MIPs) on micro-extraction techniques[J]. Sep Purif Rev, 2017, 47(1): 1-18. [65] KOTROTSIOU O, KIPARISSIDES C. Water treatment by molecularly imprinted materials[M]. Nanoscale Materials in Water Purification. 2019: 179-230. [66] ZHU G, GAO X, WANG X, et al. Influence of hydrogen bond accepting ability of anions on the adsorption performance of ionic liquid surface molecularly imprinted polymers[J]. J Chromatogr A, 2018, 1532: 40-49. [67] HASSANPOUR S, TAGHIZADEH M, YAMINI Y. Magnetic Cr(VI) ion imprinted polymer for the fast selective adsorption of Cr(VI) from aqueous solution[J]. J Polym Environ, 2017, 26(1): 101-115. [68] DENG H, WEI Z, WANG X. Enhanced adsorption of active brilliant red X-3B dye on chitosan molecularly imprinted polymer functionalized with Ti(IV) as lewis acid[J]. Carbohydr Polym, 2017, 157: 1190-1197. [69] SINGH M, SINGH S, SINGH S P, et al. Recent advancement of carbon nanomaterials engrained molecular imprinted polymer for environmental matrix[J]. Trends Environ Anal Chem, 2020, 27: e00092. [70] 傅骏青, 王晓艳, 李金花, 等. 重金属离子印迹技术[J]. 化学进展, 2016, 28(1): 91-98. FU J Q, WANG X Y, LI J H, et al. Heavy metal ion imprinting technology[J]. Prog Chem, 2016, 28(1): 91-98. [71] RITT C L, CHISHOLM B J, BEZBARUAH A N. Assessment of molecularly imprinted polymers as phosphate sorbents[J]. Chemosphere, 2019, 226: 395-404. [72] MAFU L D, MAMBA B B, MSAGATI T A M. Synthesis and characterization of ion imprinted polymeric adsorbents for the selective recognition and removal of arsenic and selenium in wastewater samples[J]. J Saudi Chem Soc, 2016, 20(5): 594-605. [73] CAO F, WANG L, TIAN Y, et al. Synthesis and evaluation of molecularly imprinted polymers with binary functional monomers for the selective removal of perfluorooctanesulfonic acid and perfluorooctanoic acid[J]. J Chromatogr A, 2017, 1516: 42-53. [74] DADFARNIA S, HAJI SHABANI A M, DEHGHANPOOR FRASHAH S. Synthesis and application of a nanoporous ion-imprinted polymer for the separation and preconcentration of trace amounts of vanadium from food samples before determination by electrothermal atomic absorption spectrometry[J]. J Sep Sci, 2016, 39(8): 1509-1517. [75] BRANGER C, MEOUCHE W, MARGAILLAN A. Recent advances on ion-imprinted polymers[J]. React Funct Polym, 2013, 73(6): 859-875. [76] PARDESHI S, SINGH S K. Precipitation polymerization: a versatile tool for preparing molecularly imprinted polymer beads for chromatography applications[J]. RSC Adv, 2016, 6(28): 23525-23536. [77] 陶晋飞. 铂(Ⅳ)和铑(Ⅲ)离子印迹聚合物的制备、性能及应用研究[D]. 昆明:云南大学, 2012. TAO J F. Preparation, performance and application of platinum (Ⅳ) and rhodium (Ⅲ) Ion imprinted polymers[D]. Kunming: Yunnan University, 2012. [78] DAKOVA I, YORDNOVA T, KARADJOVA I, et al. Synthesis and characterization of As(V)-imprinted smart polymer gel for selective adsorption of As(V) ions[M]. International Conference on Quantum, Nonlinear, and Nanophotonics 2019 (ICQNN 2019). 2019. [79] SUN Y, REN T, DENG Z, et al. Molecularly imprinted polymers fabricated using janus particle-stabilized pickering emulsions and charged monomer polymerization[J]. New J Chem, 2018, 42(9): 7355-7363. [80] 李生芳. 以介孔材料为基底的表面离子印迹聚合物的制备及表征[D]. 西宁:青海大学, 2017. LI S F. Preparation and characterization of surface ion imprinted polymers based on mesoporous materials[D]. Xining:Qinghai University, 2017. [81] QIU J, CHARLEUX B, MATYJASZEWSKI K. Controlled living radical polymerization in aqueous media homogeneous and heterogeneous systems[J]. Prog Polym Sci, 2001, 26(10): 2083-2134. [82] LIU B, ZHANG M, ZHOU C, et al. Synthesis of monodisperse, large scale and high solid content latexes of poly(n-butyl acrylate) by a one-step batch emulsion polymerization[J]. Colloid Polym Sci, 2013, 291(10): 2385-2398. [83] ZHU L Y, ZHU Z L, QIU Y L, et al. Synthesis of As(V)-Cr(III) co-imprinted polymer and its adsorption performance for arsenate species[J]. Sep Sci Technol, 2014, 49(10): 1584-1591. [84] JALILIAN R, SHAHMARI M, TAHERI A, et al. Ultrasonic-assisted micro solid phase extraction of arsenic on a new ion-imprinted polymer synthesized from chitosan-stabilized pickering emulsion in water, rice and vegetable samples[J]. Ultrason Sonochem, 2020, 61: 104802-104811. [85] 王俊莲, 刘新宇, 谢美英, 等. 体离子印迹材料的制备方法[J]. 化学进展, 2018, 30(7): 989-1012. WANG J L, LIU X Y, XIE M Y, et al. Preparation of bulk ion imprinted materials[J]. Chem Prog, 2018, 30(7): 989-1012. [86] 徐锐, 杨青, 李延斌, 等. 反相悬浮聚合法制备硫氰酸根阴离子印迹微球及其离子识别性质[J]. 应用化学, 2015, 32(8): 931-939. XU R, YANG Q, LI Y B et al. Preparation of thiocyanate anion imprinted microspheres by reversed phase suspension polymerization and their ion recognition properties[J]. Chinese J Appl Chem, 2015,32(8): 931-939. [87] 贾伟炜, 陈振斌. 离子印迹聚合物研究进展[J]. 应用化工, 2019, 48(12): 3003-3008, 3013. JIA W W, CHEN Z B. Research progress of ion imprinted polymers[J]. Appl Chem Ind, 2019, 48(12): 3003-3008, 3013. [88] DU R, GAO B, MEN J, et al. Characteristics and advantages of surface-initiated graft-polymerization as a way of “grafting from” method for graft-polymerization of functional monomers on solid particles[J]. Eur Polym J, 2020, 127:109479-109488. [89] 张磊, 徐斐, 袁敏, 等. 表面离子印迹聚合物的制备技术研究进展[J]. 应用化工, 2018, 47(2): 351-354, 364. ZHANG L, XU F, YUAN M, et al. Research progress of preparation technology of surface ion imprinted polymer[J]. Appl Chem Ind, 2018, 47(2): 351-354, 364. [90] FALLAH N, TAGHIZADEH M, HASSANPOUR S. Selective adsorption of Mo(VI) ions from aqueous solution using a surface-grafted Mo(VI) ion imprinted polymer[J]. Polymer, 2018, 144: 80-91. [91] ROY E, PATRA S, MADHURI R, et al. A single solution for arsenite and arsenate removal from drinking water using cysteine@ZnS:TiO2 nanoparticle modified molecularly imprinted biofouling-resistant filtration membrane[J]. Chem Eng J, 2016, 304:259-270. [92] GAO B, LI D, LEI Q. Preparation of high PMMA grafted particle SiO2 using surface initiated free radical polymerization[J]. J Polym Res, 2011, 18(6): 1519-1526. [93] SHI C, DING G S, TANG A N, et al. Synthesis and evaluation of ion-imprinted sol-gel material of selenite[J]. Anal Methods, 2017, 9(10): 1658-1664. [94] HU M, SHEN H, YE S, et al. Facile preparation of a tetraethylenepentamine-functionalized nano magnetic composite material and its adsorption mechanism to anions: competition or cooperation[J]. RSC Adv, 2018, 8(19): 10686-10697. [95] RUTKOWSKA M, PLOTKA-WASYLKA J, MORRISON C, et al. Application of molecularly imprinted polymers in analytical chiral separations and analysis[J]. Trends Anal Chem, 2018, 102: 91-102. [96] ASGARI S, BAGHERI H, ES-HAGHI A, et al. An imprinted interpenetrating polymer network for microextraction in packed syringe of carbamazepine[J]. J Chromatogr A, 2017, 1491: 1-8. [97] TSOI Y K, HO Y M, LEUNG K S. Selective recognition of arsenic by tailoring ion-imprinted polymer for ICP-MS Quantification[J]. Talanta, 2012, 89: 162-168. [98] NEOLAKA Y A B, LAWA Y, NAAT J N, et al. A Cr(VI)-imprinted-poly(4-VP-co-EGDMA) sorbent prepared using precipitation polymerization and its application for selective adsorptive removal and solid phase extraction of Cr(VI) ions from electroplating industrial wastewater[J]. React Funct Polym, 2020, 147: 104451-104464. [99] SAY R, ERSÖZ A, TÜRK H, et al. Selective separation and preconcentration of cyanide by a column packed with cyanide-imprinted polymeric microbeads[J]. Sep Purif Technol, 2004, 40(1): 9-14. [100] YANG Q, LI J, WANG X, et al. Strategies of molecular imprinting-based fluorescence sensors for chemical and biological analysis[J]. Biosens Bioelectron, 2018, 112: 54-71. [101] LU H, XU S. Dual channel ion imprinted fluorescent polymers for dual mode simultaneous chromium speciation analysis[J]. Analyst, 2020, 145(7): 2661-2668. [102] ZHANG M Y, HUANG R F, MA X G, et al. Selective Fluorescence sensor based on ion-imprinted polymer-modified quantum dots for trace detection of Cr(VI) in aqueous solution[J]. Anal Bioanal Chem, 2019, 411(27): 7165-7175. [103] JINADASA K K, PENA-VAZQUEZ E, BERMEJO-BARRERA P, et al. Synthesis and application of a surface ionic imprinting polymer on silica-coated Mn-doped ZnS quantum dots as a chemosensor for the selective quantification of inorganic arsenic in fish[J]. Anal Bioanal Chem, 2020, 412(7): 1663-1673. [104] ZHOU C, YANG M, LI S S, et al. Electrochemically etched gold wire microelectrode for the determination of inorganic arsenic[J]. Electrochim Acta, 2017, 231: 238-246. [105] GUMPU M B, VEERAPANDIAN M, KRISHNAN U M, et al. Electrochemical sensing platform for the determination of arsenite and arsenate using electroactive nanocomposite electrode[J]. Chem Eng J, 2018, 351: 319-327. [106] ALIZADEH T, SABZI R E, ALIZADEH H. Synthesis of nano-sized cyanide ion-imprinted polymer via non-covalent approach and its use for the fabrication of a CN--selective carbon nanotube impregnated carbon paste electrode[J]. Talanta, 2016, 147: 90-97. [107] ALIZADEH T, ATAYI K. Synthesis of nano-sized hydrogen phosphate-imprinted polymer in acetonitrile/water mixture and its use as a recognition element of hydrogen phosphate selective all-solid state potentiometric electrode[J]. J Mol Recognit, 2018, 31(2): e2678. [108] KALITA H, CHISHOLM B, BEZBARUAH A N. Novel arsenic ion-imprinted polymer: simultaneous removal As(III) and As(V) from water[M]. World Environmental and Water Resources Congress 2011. 2011: 3396-3401. [109] HAO J, HAN M J, MENG X. Preparation and evaluation of thiol-functionalized activated alumina for arsenite removal from water[J]. J Hazard Mater, 2009, 167(1/2/3): 1215-1221. [110] PRAMANIK K, SARKAR P, BHATTACHARYAY D. 3-Mercaptopropanoic acid modified cellulose filter paper for quick removal of arsenate from drinking water[J]. Int J Biol Macromol, 2019, 122: 185-194. |
[1] | Fu-Lin WANG, Zhong-Fu ZHAO, Yi-Ming LIANG, Jian-En HUANG, Chun-Qing ZHANG. Preparation, Structure and Properties of Crystalline Homo-Polystyrene/Hydrogenated Poly(styrene-b-butadiene-b-styrene) Anion Exchange Membrane [J]. Chinese Journal of Applied Chemistry, 2023, 40(6): 833-844. |
[2] | Li QIN, Xiao-Ting YOU, Lu-Hua TANG, Jian-Wen LI, Yin ZHANG, Wen-Hui GAO, Jun-Hua HAN. Preparation and Application of Auramine O Imprinted Sensor Based on Nanomaterials Modification [J]. Chinese Journal of Applied Chemistry, 2022, 39(12): 1880-1890. |
[3] | LIU Yu-Ting, SUN Jia-Xi, YIN Da-Wei. Research Progress on the Synthesis and Application of Ferroncene-based Polymers [J]. Chinese Journal of Applied Chemistry, 2021, 38(4): 343-366. |
[4] | Yu-Fan JI, Feng CAI, Hai-Feng YU. Research Progress on Photoswitchable Surface Topography of Liquid Crystalline Polymer [J]. Chinese Journal of Applied Chemistry, 2021, 38(10): 1226-1237. |
[5] | Long-Fei LUO, Yu-Jie LI, Zhi-Hao SHEN, Shi-Jun ZHENG, Xing-He FAN. Progress in Self⁃assembly and Photo⁃responsiveness of Thin Films of Azobenzene⁃Based Liquid Crystalline Block Copolymers [J]. Chinese Journal of Applied Chemistry, 2021, 38(10): 1238-1254. |
[6] | GAO Siheng, YANG Yu, WU Jinling, QIN Lixia, KANG Shizhao, LI Xiangqing. Preparation and Photoelectric Performance of Graphene Oxide/Ultrafine Silver Composite [J]. Chinese Journal of Applied Chemistry, 2020, 37(8): 923-929. |
[7] | ZHANG Yanping, XUE Dongfeng. Influence of Sodium and Potassium Ions on Dihydrogen Phosphate Anion Raman Spectra [J]. Chinese Journal of Applied Chemistry, 2020, 37(7): 823-829. |
[8] | ZHAO Bingbing, DENG Dongyang, CHEN Guihua, SONG Qingmei, FU Jianping, ZHANG Sukun, ZHOU Chengyong, JÜ Yongming. Main Influencing Factors and Removal Mechanism of Phosphate Anions by Chitosan-Fe(III) Composite Gel Beads [J]. Chinese Journal of Applied Chemistry, 2020, 37(6): 673-682. |
[9] | WANG Yichen, LUO Jing, LIU Ren, DAI Shenghua. Progress in Preparation of Graphene Hollow Microspheres [J]. Chinese Journal of Applied Chemistry, 2020, 37(12): 1374-1383. |
[10] | CAO Cheng, LIU Zhiyu, JI Xiangdong, SHAO Xiaoxiao, XIAO Hong. Highly Selective Recognition of a Long-Chain Alkoxyphenylhydrozone Derivative for Floride Ion [J]. Chinese Journal of Applied Chemistry, 2020, 37(12): 1432-1440. |
[11] | FU Fengyan, CHENG Jingquan, ZHANG Jie, GAO Zhihua. Recent Development in Ionic Exchange Groups-Based Anion Exchange Membrane [J]. Chinese Journal of Applied Chemistry, 2020, 37(10): 1112-1126. |
[12] | LI Wenjie, WANG Lixue, SUN Linghui, YOU Wei, ZHAO Yabin. Progress in Matrix-Assisted Laser Desorption Mass Spectrometry Imaging for Fingerprint Analysis [J]. Chinese Journal of Applied Chemistry, 2020, 37(10): 1137-1146. |
[13] | MA Hecheng,LIU Jianjun,YU Yingchun,ZUO Shengli. Research Progress in Preparation and Photocatalysis of Two-Dimensional Graphitic Carbon Nitride Nanosheets [J]. Chinese Journal of Applied Chemistry, 2019, 36(3): 259-268. |
[14] | LI Xiancai, TIAN Minglei, CHENG Yuwen, WANG Xiu. Preparation and Characterization of Yb Ion-Imprinted Polymers Based on MCM-41 Molecular Sieve Surface [J]. Chinese Journal of Applied Chemistry, 2019, 36(2): 203-211. |
[15] | LIN Shengsheng, HE Qingyun, ZHOU Jiamin, ZHAO Mingpeng, FENG Zongcai, YU Biao, SONG Xiumei. Colorimetric Sensors for Anion Recognition Based on Benzeneazophenol [J]. Chinese Journal of Applied Chemistry, 2019, 36(12): 1447-1455. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||