1 |
ZHANG X P, XU K, ZHUANG Y, et al. Single cobalt atom catalysis for the construction of quinazolines and quinazolinones via the aerobic dehydrocyclization of ethanol[J]. Green Chem, 2025, 27(1): 120-132.
|
2 |
SUN K K, SHAN H B, LU G P, et al. Synthesis of N-heterocycles via oxidant-free dehydrocyclization of alcohols using heterogeneous catalysts[J]. Angew Chem Int Ed, 2021, 60(48): 25188-25202.
|
3 |
WANG F, ZHU F Y, REN E X, et al. Fe-FeOx nanoparticles encapsulated in N-doped carbon material: a facile catalyst for selective synthesis of quinazolines from alcohols in water[J]. Catal Sci Technol, 2022, 12(23): 7018-7026.
|
4 |
BIGINELLI P. Aldehyde-urea derivatives of aceto-and oxaloacetic acids[J]. Gaza Chim Ital, 1893, 23: 360-416.
|
5 |
RANU B C, HAJARA A, JANA U. Indium(Ⅲ) chloride-catalyzed one-pot synthesis of dihydropyrimidinones by a three-component coupling of 1,3-dicarbonyl compounds, aldehydes, and urea: an improved procedure for the Biginelli reaction[J]. J Org Chem, 2000, 65(19): 6270-6272.
|
6 |
PARASKAR A S, DEWKAR G K, SUDALAI A. Cu(OTf)2: a reusable catalyst for high-yield synthesis of 3,4-dihydropyrimidin-2(1H)-ones[J]. Tetrahedron Lett, 2003, 44(16): 3305-3308.
|
7 |
RODRIGUEZ-DOMINGUEZ J C, BERNARDI D, KIRSCH G. ZrCl4 or ZrOCl2 under neat conditions: optimized green alternatives for the Biginelli reaction[J]. Tetrahedron Lett, 2007, 48(33): 5777-5780.
|
8 |
TAKALE S, PARAB S, PHATANGARE K, et al. IBX in aqueous medium: a green protocol for the Biginelli reaction[J]. Catal Sci Technol, 2011, 1(7): 1128-1132.
|
9 |
SAHOO P K, BOSE A, MAL A. Solven-free ball-milling Biginelli reaction by subcomponent synthesis[J]. Eur J Org Chem, 2015, 2015(32): 6994-6998.
|
10 |
KIYANI H, GHIASI M. Phthalimide-N-sulfonic acid: a new and efficient organocatalyst for the Biginelli reaction under solvent-free conditions[J]. Res Chem Intermed, 2015, 41(9): 6635-6648.
|
11 |
ZHANG Q, WANG X, LI Z, et al. Phytic acid: a biogenic organocatalyst for one-pot Biginelli reactions to 3,4-dihydropyrimidin-2(1H)-ones/thiones[J]. RSC Adv, 2014, 4(38): 19710-19715.
|
12 |
DAVANAGERE P M, MAITI B. 1,3-Bis(carboxymethyl)imidazolium chloride as a sustainable, recyclable, and metal-free ionic catalyst for the Biginelli multicomponent reaction in neat condition[J]. ACS Omega, 2021, 6(40): 26035-26047.
|
13 |
YAO N, LU M, LIU X B, et al. Copper-doped mesoporous silica supported dual acidic ionic liquid as an efficient and cooperative reusability catalyst for Biginelli reaction[J]. J Mol Liq, 2018, 262: 328-335.
|
14 |
PATEL U, PARMAR B, PATEL P, et al. The synthesis and characterization of Zn(Ⅱ)/Cd(Ⅱ) based MOFs by a mixed ligand strategy: a Zn(Ⅱ) MOF as a dual functional material for reversible dye adsorption and as a heterogeneous catalyst for the Biginelli reaction[J]. Mater Chem Front, 2021, 5(1): 304-314.
|
15 |
YAO B J, WU W X, DING L G, et al. Sulfonic acid and ionic liquid functionalized covalent organic framework for efficient catalysis of the Biginelli reaction[J]. J Org Chem, 2021, 86(3): 3024-3032.
|
16 |
CHANDRAVARKAR A, ANEEJA T, ANILKUMAR G. Advances in Biginelli reaction: a comprehensive review[J]. J Heterocyclic Chem, 2024, 61(1): 5-28.
|
17 |
ABBOT A, CAPPER G, DAVIES D, et al. Preparation of novel, moisture-stable, Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains[J]. Chem Commun, 2001(19): 2010-2011.
|
18 |
BORSE B N, BORUDE V S, SHUKLA S R. Synthesis of novel dihydropyrimidin-2(1H)-ones derivatives using lipase and their antimicrobial activity[J]. Curr Chem Lett, 2012, 1(2): 59-68.
|
19 |
GORE S, BASKARAN S, KOENIG B. Efficient synthesis of 3,4-dihydropyrimidin-2-ones in low melting tartaric acid-urea mixtures[J]. Green Chem, 2011,13(4): 1009-1013.
|
20 |
MAHDIPOUR M, KHABAZZADEH H, KERMANI E T. Efficient synthesis of dihydropyrimidine and amidoalkyl naphthol derivatives using zinc chloride based deep eutectic systems as solvent & catalyst[J]. J Sci I R Iran, 2016, 27(2): 119-127.
|
21 |
CUI Y, LI C, BAO M. Deep eutectic solvents (DESs) as powerful and recyclable catalysts and solvents for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones[J]. Green Process Synth, 2019, 8(1): 568-576.
|
22 |
SIMEONOVA S P, AFONSOB C A. Basicity and stability of urea deep eutectic mixtures[J]. RSC Adv, 2016, 6(7): 5485-5490.
|
23 |
ZHENG L, WANG Y, LI X, et al. Deep eutectic solvent/benzenesulfonic acid: an environmental friendly catalyst system towards the synthesis of dihydropyrimidinones via Biginelli reaction[J]. Chin J Org Chem, 2022, 42(11): 3714-3720.
|
24 |
ADIBI H, SAMIMI H A, BEYGZADEH M. Iron(Ⅲ) trifluoroacetate and trifluoromethanesulfonate: recyclable Lewis acid catalysts for one-pot synthesis of 3,4-dihydropyrimidinones or their sulfur analogues and 1,4-dihydropyridines via solvent-free Biginelli and Hantzsch condensation protocols[J]. Catal Commun, 2007, 8(12): 2119-2124.
|
25 |
WILLIG J C M, GRANETTO G, REGINATO D, et al. A comparative study between Cu(INA)2-MOF and [Cu(INA)2(H2O)4] complex for a click reaction and the Biginelli reaction under solvent-free conditions[J]. RSC Adv, 2020, 10(6): 3407-3415.
|
26 |
PURIPAT M, RAMOZZI R, HATANAKA M, et al. The Biginelli reaction is a urea-catalyzed organocatalytic multicomponent reaction[J]. J Org Chem, 2015, 80(14): 6959-6967.
|