应用化学 ›› 2023, Vol. 40 ›› Issue (6): 789-805.DOI: 10.19894/j.issn.1000-0518.220414
于宜辰, 张雨宸, 张耀远(), 吴芹, 史大昕, 陈康成, 黎汉生()
收稿日期:
2022-12-29
接受日期:
2023-05-22
出版日期:
2023-06-01
发布日期:
2023-06-27
通讯作者:
张耀远,黎汉生
基金资助:
Yi-Chen YU, Yu-Chen ZHANG, Yao-Yuan ZHANG(), Qin WU, Da-Xin SHI, Kang-Cheng CHEN, Han-Sheng LI()
Received:
2022-12-29
Accepted:
2023-05-22
Published:
2023-06-01
Online:
2023-06-27
Contact:
Yao-Yuan ZHANG,Han-Sheng LI
About author:
hanshengli@bit.edu.cnSupported by:
摘要:
丙烯作为基本的化工原料,近年来需求不断增加,传统蒸汽裂解和催化裂化工艺难以满足丙烯需求。丙烷脱氢(PDH)工艺因原料来源丰富、丙烯选择性高和产物简单易分离等优势备受关注。传统PDH催化剂为Pt-Sn/Al2O3和CrO x /Al2O3,但铂基催化剂价格昂贵,铬基催化剂毒性较高。本体金属氧化物(氧化锆、氧化钛、氧化铝、氧化钨、氧化铕和氧化钆)催化剂具有本征活性高、价格低廉和无毒环保等优势,展现出一定的应用前景。基于此,主要从反应机理和催化剂结构性质调控2个方面综述本体金属氧化物在PDH反应中的研究进展。总结发现配位不饱和的金属阳离子(M
中图分类号:
于宜辰, 张雨宸, 张耀远, 吴芹, 史大昕, 陈康成, 黎汉生. 本体金属氧化物在丙烷无氧脱氢中的研究进展[J]. 应用化学, 2023, 40(6): 789-805.
Yi-Chen YU, Yu-Chen ZHANG, Yao-Yuan ZHANG, Qin WU, Da-Xin SHI, Kang-Cheng CHEN, Han-Sheng LI. Research Progress of Bulk Metal Oxides for Non-oxidative Propane Dehydrogenation[J]. Chinese Journal of Applied Chemistry, 2023, 40(6): 789-805.
图1 ZrO2(-111)表面的丙烷脱氢反应机理; (a) PDH能垒(黑色为完整表面,红色为缺陷表面), (b)完整和(c)缺陷表面上中间体和过渡态(TS)的结构(青色、灰色、红色和白色分别代表Zr、C、O和H)[24]
Fig.1 Mechanism of PDH on ZrO2(-111). (a) The calculated energy profiles along the pathways of PDH and the optimized structures of intermediates and transition states (TS) on (b) s-ZrO2(-111) and (c) d-ZrO2(-111) surfaces (cyan, grey, red and white symbols stand for Zr, C, O and H, respectively)[24]
图2 γ-Al2O3(100)表面AlVa-OIIIa位点的丙烷脱氢反应机理。过渡态用?表示; 上面是协同机制,下面是逐步机制[25]
Fig.2 Propane dehydrogenation reaction mechanism of AlVa-OIIIa site on γ-Al2O3(100) surface. Transition states denoted with double daggers (?); top panel: concerted mechanism, bottom panel: stepwise mechanism[25]
图3 TiO2(101)表面丙烷脱氢的机理。上面是完整表面,下面是缺陷表面(浅灰色、黄色、深灰色、红色和白色分别代表Ti、Ticus、C、O和H)[27]
Fig.3 Mechanism of propane dehydrogenation on the surface of TiO2(101). Top panel: s-TiO2(101), bottom panel:d-TiO2(101) (light grey, yellow, dark grey, red and white symbols stand for Ti, Ticus, C, O and H, respectively)[27]
Catalysts | Temperature/℃ | Feed composition(V∶V) | m(catalysts)/g | Propane conversion/% | Propene selectivity/% | Ref. |
---|---|---|---|---|---|---|
0.05%Cu/LaZrO x | 550 | V(C3H8)∶V(N2)=2∶3 | 0.04 | 12.6 | 90 | [ |
0.05%Ru/LaZrO x | 550 | V(C3H8)∶V(N2)=2∶3 | 0.04 | 19.7 | 99 | [ |
A-TiO2(anatase) | 600 | V(C3H8)∶V(Ar)=1∶10 | 0.3 | 22 | 92 | [ |
Air-TiO2-600 | 600 | V(C3H8)∶V(Ar)=1∶10 | 0.3 | 10 | 70 | [ |
H2-TiO2-600 | 600 | V(C3H8)∶V(Ar)=1∶10 | 0.3 | 24 | 92 | [ |
ZrO2_A (mixed phases) | 550 | V(C3H8)∶V(N2)=2∶3 | 0.68~1.8 | 13 | 75 | [ |
ZrO2_F (monoclinic) | 550 | V(C3H8)∶V(N2)=2∶3 | 0.68~1.8 | 8 | 85 | [ |
ZrO2_300 (mixed phases) | 550 | V(C3H8):V(N2)=2∶3 | 0.68~1.8 | 8 | 93 | [ |
γ-Al2O3(CO reduction) | 600 | V(C3H8)∶V(N2)=5∶95 | 0.05~0.4 | 25 | 95 | [ |
δ-Al2O3(CO reduction) | 600 | V(C3H8)∶V(N2)=5∶95 | 0.05~0.4 | 13 | 95 | [ |
0.05%Cu/LaZrO x | 550 | V(C3H8)∶V(H2)∶V(N2)=4:1∶5 | - | 30 | 90 | [ |
0.05%Cu/LaZrO x | 550 | V(C3H8)∶V(H2)∶V(N2)=4∶3∶3 | - | 20 | 90 | [ |
0.005%Ru/YZrO x | 550 | V(C3H8)∶V(N2)=2∶3 | - | 20 | 90 | [ |
0.005%Ru/YZrO x | 550 | V(C3H8)∶V(H2)∶V(N2)=4∶1∶5 | - | 28 | 90 | [ |
1%V-TiO2 | 550 | V(C3H8)∶V(Ar)=1∶39 | 0.2 | 11 | 95 | [ |
0.05%Rh/LaZrO x | 550 | V(C3H8)∶V(N2)=2∶3 | 0.05~0.3 | 23 | 92 | [ |
0.05%Rh/YZrO x | 550 | V(C3H8)∶V(N2)=2∶3 | 0.05~0.3 | 28 | 93 | [ |
0.05%Ru/ZrO x | 550 | V(C3H8)∶V(N2)=2∶3 | 0.05~0.3 | 15 | 92 | [ |
0.05%Pt/ZrO x | 550 | V(C3H8)∶V(N2)=2∶3 | 0.05~0.3 | 16 | 93 | [ |
0.05%Ir/ZrO x | 550 | V(C3H8)∶V(N2)=2∶3 | 0.05~0.3 | 18 | 93 | [ |
0.005%Rh/ZrO x | 550 | V(C3H8)∶V(N2)=2∶3 | 0.05~0.3 | 18 | 90 | [ |
0.1%Rh/ZrO x | 550 | V(C3H8)∶V(N2)=2∶3 | 0.05~0.3 | 22 | 95 | [ |
0.01%Rh/LaZrO x | 550 | V(C3H8)∶V(N2)=2∶3 | 0.05~0.3 | 20 | 95 | [ |
0.01%Ru/LaZrO x | 550 | V(C3H8)∶V(N2)=2∶3 | 0.05~0.3 | 19 | 93 | [ |
0.03%Ir/LaZrO x | 550 | V(C3H8)∶V(N2)=2∶3 | 0.05~0.3 | 20 | 95 | [ |
0.025%Rh/ZrO2 | 550 | V(C3H8)∶V(N2)=2∶3 | 0.3 | 25 | 90 | [ |
0.05%Rh/ZrO2 | 550 | V(C3H8)∶V(N2)=2∶3 | 0.3 | 26 | 88 | [ |
0.01%Rh/ZrO2 | 550 | V(C3H8)∶V(N2)=2∶3 | 0.3 | 18 | 90 | [ |
0.1%Rh/ZrO2 | 550 | V(C3H8)∶V(N2)=2∶3 | 0.3 | 20 | 90 | [ |
ZrO2 | 550 | V(C3H8)∶V(N2)=2∶3 | 0.3 | 15 | 88 | [ |
Cr5Zr95O x | 550 | V(C3H8)∶V(N2)=2∶3 | 0.01~1.2 | 15 | 93 | [ |
Cr10Zr90O x | 550 | V(C3H8)∶V(N2)=2∶3 | 0.01~1.2 | 5 | 97 | [ |
Cr10Zr90/SiO2 | 550 | V(C3H8)∶V(N2)=2∶3 | 0.05 | 13 | 95 | [ |
CuZrO-8 | 600 | V(C3H8)∶V(Ar)=4∶26 | 0.2 | 26 | 99 | [ |
CuZrO-5 | 600 | V(C3H8)∶V(Ar)=4∶26 | 0.2 | 26 | 99 | [ |
CuZrO-10 | 600 | V(C3H8)∶V(Ar)=4∶26 | 0.2 | 26 | 99 | [ |
ZnZr2 | 500 | V(C3H8)∶V(N2)=5∶95 | 0.1 | 44 | 73 | [ |
ZnZr3 | 500 | V(C3H8)∶V(N2)=5∶95 | 0.1 | 45 | 61 | [ |
ZrO2 | 550 | V(C3H8)∶V(Ar)=4∶26 | 0.2 | 11 | 99 | [ |
VZrO-4 | 550 | V(C3H8)∶V(Ar)=4∶26 | 0.2 | 23 | 98 | [ |
VZrO-8 | 550 | V(C3H8)∶V(Ar)=4∶26 | 0.2 | 25 | 98 | [ |
θ-Al2O3-90 | 630 | V(C3H8)∶V(H2)∶V(N2)=1∶1∶8 | 2 | 47.5 | 88 | [ |
γ-Al2O3-200 | 630 | V(C3H8)∶V(H2)∶V(N2)=1∶1∶8 | 2 | 40 | 83 | [ |
γ-Al2O3-100 | 630 | V(C3H8)∶V(H2)∶V(N2)=1∶1∶8 | 2 | 32 | 88 | [ |
TiO2-600 | 600 | V(C3H8)∶V(Ar)=1.5∶12 | 0.3 | 15 | 93 | [ |
1.5%Sc/TiO2-500 | 600 | V(C3H8)∶V(Ar)=1.5∶12 | 0.3 | 40 | 90 | [ |
TiO2-600 | 600 | V(C3H8)∶V(Ar)=1.5∶12 | 0.3 | 15 | 93 | [ |
1.5%Sc/TiO2-500 | 600 | V(C3H8)∶V(Ar)=1.5∶12 | 0.3 | 40 | 90 | [ |
1.5%Sc/TiO2-600 | 600 | V(C3H8)∶V(Ar)=1.5∶12 | 0.3 | 35 | 95 | [ |
WO3 | 600 | V(C3H8)∶V(H2)=2 | 0.2 | 3 | 90 | [ |
WO3 | 600 | V(C3H8)∶V(H2)=1 | 0.2 | 5 | 90 | [ |
WO3 | 600 | V(C3H8)∶V(H2)=0.5 | 0.2 | 10 | 85 | [ |
Eu2O3 | 550 | V(C3H8)∶V(N2)=2∶3 | 0.05 | 25 | 60 | [ |
Gd2O3 | 550 | V(C3H8)∶V(N2)=2∶3 | 0.05 | 25 | 70 | [ |
表1 不同本体金属氧化物催化剂在PDH反应中的催化性能
Table 1 Catalytic performance of different bulk metal oxide catalysts in PDH reaction
Catalysts | Temperature/℃ | Feed composition(V∶V) | m(catalysts)/g | Propane conversion/% | Propene selectivity/% | Ref. |
---|---|---|---|---|---|---|
0.05%Cu/LaZrO x | 550 | V(C3H8)∶V(N2)=2∶3 | 0.04 | 12.6 | 90 | [ |
0.05%Ru/LaZrO x | 550 | V(C3H8)∶V(N2)=2∶3 | 0.04 | 19.7 | 99 | [ |
A-TiO2(anatase) | 600 | V(C3H8)∶V(Ar)=1∶10 | 0.3 | 22 | 92 | [ |
Air-TiO2-600 | 600 | V(C3H8)∶V(Ar)=1∶10 | 0.3 | 10 | 70 | [ |
H2-TiO2-600 | 600 | V(C3H8)∶V(Ar)=1∶10 | 0.3 | 24 | 92 | [ |
ZrO2_A (mixed phases) | 550 | V(C3H8)∶V(N2)=2∶3 | 0.68~1.8 | 13 | 75 | [ |
ZrO2_F (monoclinic) | 550 | V(C3H8)∶V(N2)=2∶3 | 0.68~1.8 | 8 | 85 | [ |
ZrO2_300 (mixed phases) | 550 | V(C3H8):V(N2)=2∶3 | 0.68~1.8 | 8 | 93 | [ |
γ-Al2O3(CO reduction) | 600 | V(C3H8)∶V(N2)=5∶95 | 0.05~0.4 | 25 | 95 | [ |
δ-Al2O3(CO reduction) | 600 | V(C3H8)∶V(N2)=5∶95 | 0.05~0.4 | 13 | 95 | [ |
0.05%Cu/LaZrO x | 550 | V(C3H8)∶V(H2)∶V(N2)=4:1∶5 | - | 30 | 90 | [ |
0.05%Cu/LaZrO x | 550 | V(C3H8)∶V(H2)∶V(N2)=4∶3∶3 | - | 20 | 90 | [ |
0.005%Ru/YZrO x | 550 | V(C3H8)∶V(N2)=2∶3 | - | 20 | 90 | [ |
0.005%Ru/YZrO x | 550 | V(C3H8)∶V(H2)∶V(N2)=4∶1∶5 | - | 28 | 90 | [ |
1%V-TiO2 | 550 | V(C3H8)∶V(Ar)=1∶39 | 0.2 | 11 | 95 | [ |
0.05%Rh/LaZrO x | 550 | V(C3H8)∶V(N2)=2∶3 | 0.05~0.3 | 23 | 92 | [ |
0.05%Rh/YZrO x | 550 | V(C3H8)∶V(N2)=2∶3 | 0.05~0.3 | 28 | 93 | [ |
0.05%Ru/ZrO x | 550 | V(C3H8)∶V(N2)=2∶3 | 0.05~0.3 | 15 | 92 | [ |
0.05%Pt/ZrO x | 550 | V(C3H8)∶V(N2)=2∶3 | 0.05~0.3 | 16 | 93 | [ |
0.05%Ir/ZrO x | 550 | V(C3H8)∶V(N2)=2∶3 | 0.05~0.3 | 18 | 93 | [ |
0.005%Rh/ZrO x | 550 | V(C3H8)∶V(N2)=2∶3 | 0.05~0.3 | 18 | 90 | [ |
0.1%Rh/ZrO x | 550 | V(C3H8)∶V(N2)=2∶3 | 0.05~0.3 | 22 | 95 | [ |
0.01%Rh/LaZrO x | 550 | V(C3H8)∶V(N2)=2∶3 | 0.05~0.3 | 20 | 95 | [ |
0.01%Ru/LaZrO x | 550 | V(C3H8)∶V(N2)=2∶3 | 0.05~0.3 | 19 | 93 | [ |
0.03%Ir/LaZrO x | 550 | V(C3H8)∶V(N2)=2∶3 | 0.05~0.3 | 20 | 95 | [ |
0.025%Rh/ZrO2 | 550 | V(C3H8)∶V(N2)=2∶3 | 0.3 | 25 | 90 | [ |
0.05%Rh/ZrO2 | 550 | V(C3H8)∶V(N2)=2∶3 | 0.3 | 26 | 88 | [ |
0.01%Rh/ZrO2 | 550 | V(C3H8)∶V(N2)=2∶3 | 0.3 | 18 | 90 | [ |
0.1%Rh/ZrO2 | 550 | V(C3H8)∶V(N2)=2∶3 | 0.3 | 20 | 90 | [ |
ZrO2 | 550 | V(C3H8)∶V(N2)=2∶3 | 0.3 | 15 | 88 | [ |
Cr5Zr95O x | 550 | V(C3H8)∶V(N2)=2∶3 | 0.01~1.2 | 15 | 93 | [ |
Cr10Zr90O x | 550 | V(C3H8)∶V(N2)=2∶3 | 0.01~1.2 | 5 | 97 | [ |
Cr10Zr90/SiO2 | 550 | V(C3H8)∶V(N2)=2∶3 | 0.05 | 13 | 95 | [ |
CuZrO-8 | 600 | V(C3H8)∶V(Ar)=4∶26 | 0.2 | 26 | 99 | [ |
CuZrO-5 | 600 | V(C3H8)∶V(Ar)=4∶26 | 0.2 | 26 | 99 | [ |
CuZrO-10 | 600 | V(C3H8)∶V(Ar)=4∶26 | 0.2 | 26 | 99 | [ |
ZnZr2 | 500 | V(C3H8)∶V(N2)=5∶95 | 0.1 | 44 | 73 | [ |
ZnZr3 | 500 | V(C3H8)∶V(N2)=5∶95 | 0.1 | 45 | 61 | [ |
ZrO2 | 550 | V(C3H8)∶V(Ar)=4∶26 | 0.2 | 11 | 99 | [ |
VZrO-4 | 550 | V(C3H8)∶V(Ar)=4∶26 | 0.2 | 23 | 98 | [ |
VZrO-8 | 550 | V(C3H8)∶V(Ar)=4∶26 | 0.2 | 25 | 98 | [ |
θ-Al2O3-90 | 630 | V(C3H8)∶V(H2)∶V(N2)=1∶1∶8 | 2 | 47.5 | 88 | [ |
γ-Al2O3-200 | 630 | V(C3H8)∶V(H2)∶V(N2)=1∶1∶8 | 2 | 40 | 83 | [ |
γ-Al2O3-100 | 630 | V(C3H8)∶V(H2)∶V(N2)=1∶1∶8 | 2 | 32 | 88 | [ |
TiO2-600 | 600 | V(C3H8)∶V(Ar)=1.5∶12 | 0.3 | 15 | 93 | [ |
1.5%Sc/TiO2-500 | 600 | V(C3H8)∶V(Ar)=1.5∶12 | 0.3 | 40 | 90 | [ |
TiO2-600 | 600 | V(C3H8)∶V(Ar)=1.5∶12 | 0.3 | 15 | 93 | [ |
1.5%Sc/TiO2-500 | 600 | V(C3H8)∶V(Ar)=1.5∶12 | 0.3 | 40 | 90 | [ |
1.5%Sc/TiO2-600 | 600 | V(C3H8)∶V(Ar)=1.5∶12 | 0.3 | 35 | 95 | [ |
WO3 | 600 | V(C3H8)∶V(H2)=2 | 0.2 | 3 | 90 | [ |
WO3 | 600 | V(C3H8)∶V(H2)=1 | 0.2 | 5 | 90 | [ |
WO3 | 600 | V(C3H8)∶V(H2)=0.5 | 0.2 | 10 | 85 | [ |
Eu2O3 | 550 | V(C3H8)∶V(N2)=2∶3 | 0.05 | 25 | 60 | [ |
Gd2O3 | 550 | V(C3H8)∶V(N2)=2∶3 | 0.05 | 25 | 70 | [ |
图9 不同调控方式的ZrO2基催化剂在PDH反应中丙烯选择性和转化率的关系
Fig.9 The relationship between propylene selectivity and conversion rate of ZrO2-based catalysts with different regulatory modes in PDH reaction
1 | 杜凯敏, 范杰. 丙烷氧化脱氢制丙烯研究进展[J]. 化工进展, 2019, 38(6): 2697-2705. |
DU K M, FAN J. Research progress on oxidative dehydrogenation of propane to propene[J]. Chem Ind Eng Prog, 2019, 38(6): 2697-2705. | |
2 | 韩香莲. 丙烯生产工艺研究进展[J]. 山东化工, 2013, 42(5): 60-62. |
HAN X L. Development of propylene production technology[J]. Shandong Chem Ind, 2013, 42(5): 60-62. | |
3 | 彭英桂, 范鑫鑫, 李虎强, 等. 蒸汽裂解原料研究进展[J]. 广州化工, 2016, 44(16): 41-43. |
PENG Y G, FAN X X, LI H Q, et al. Development of feedstock for steam cracking[J]. Guangzhou Chem Ind, 2016, 44(16): 41-43. | |
4 | 冯媛, 李虎强, 陈文瑞, 等. 蒸汽裂解催化剂研究进展[J]. 广州化工, 2016, 44(13): 45-48. |
FENG Y, LI H Q, CHEN W R, et al. Research progress on catalysts of steam cracking[J]. Guangzhou Chem Ind, 2016, 44(13): 45-48. | |
5 | 毛安国, 白风宇, 刘守军, 等. 催化裂化过程烃类分子水平转化规律分析[J]. 石油炼制与化工, 2022, 53(5): 40-45. |
MAO A G, BAI F Y, LIU S J, et al. Molecular-based hydrocarbon conversion rules in FCC progress[J]. Pet Process Petrochem, 2022, 53(5): 40-45. | |
6 | 陈浩, 詹小燕, 郭振宇. 丙烷脱氢工艺发展趋势分析[J]. 炼油技术与工程, 2020, 50(11): 9-12. |
CHEN H, ZHAN X Y, GUO Z Y. Analysis on development trend of propane dehydrogenation process[J]. Pet Refin Eng, 2020, 50(11): 9-12. | |
7 | 夏兵. 丙烷脱氢(PDH)工艺技术及经济性分析[J]. 山东化工, 2021, 50(14): 165-167. |
XIA B. Technology and economic analysis of propane dehydrogenation(PDH)[J]. Shandong Chem Ind, 2021, 50(14): 165-167. | |
8 | SATTLER J J H B, RUIZ-MARTINEZ J, SANTILLAN-JIMENEZ E, et al. Catalytic dehydrogenation of light alkanes on metals and metal oxides[J]. Chem Rev, 2014, 114(20): 10613-10653. |
9 | 余长林, 葛庆杰, 徐恒泳, 等. 丙烷脱氢制丙烯研究新进展[J]. 化工进展, 2006, 25(9): 977-982. |
YU C L, GE Q J, XU H Y, et al. New development of dehydrogenation of propane to propylene[J]. Chem Ind Eng Prog, 2006, 25(9): 977-982. | |
10 | 张雨宸, 张耀远, 吴芹, 等. 丙烷脱氢用高稳定性Pt基催化剂研究进展[J]. 化工进展, 2022, 41(9): 4733-4751. |
ZHANG Y C, ZHANG Y Y, WU Q, et al. Advances in high stable Pt based catalysts for propane dehydrogenation[J]. Chem Ind Eng Prog, 2022, 41(9): 4733-4751. | |
11 | YANG C, WU Z W, ZHANG G H, et al. Promotion of Pd nanoparticles by Fe and formation of a Pd3Fe intermetallic alloy for propane dehydrogenation[J]. Catal Today, 2019, 323: 123-128. |
12 | GALLAGHER J R, CHILDERS D J, ZHAO H, et al. Structural evolution of an intermetallic Pd-Zn catalyst selective for propane dehydrogenation[J]. Phys Chem Chem Phys, 2015, 17(42): 28144-28153. |
13 | CHILDERS D J, SCHWEITZER N M, SHAHARI S M K, et al. Modifying structure-sensitive reactions by addition of Zn to Pd[J]. J Catal, 2014, 318: 75-84. |
14 | WU Z, WEGENER E C, TSENG H T, et al. Pd-In intermetallic alloy nanoparticles: highly selective ethane dehydrogenation catalysts[J]. Catal Sci Technol, 2016, 6(18): 6965-6976. |
15 | SAELEE T, NAMUANGRUK S, KUNGWAN N, et al. Theoretical insight into catalytic propane dehydrogenation on Ni(111)[J]. J Phys Chem C, 2018, 122(26): 14678-14690. |
16 | HE Y, SONG Y, CULLEN D A, et al. Selective and stable non-noble-metal intermetallic compound catalyst for the direct dehydrogenation of propane to propylene[J]. J Am Chem Soc, 2018, 140(43): 14010-14014. |
17 | CHANG Q Y, WANG K Q, SUI Z J, et al. Rational design of single-atom-doped Ga2O3 catalysts for propane dehydrogenation: breaking through volcano plot by Lewis acid-base interactions[J]. ACS Catal, 2021, 11(9): 5135-5147. |
18 | ZHENG B, HUA W M, YUE Y H, et al. Dehydrogenation of propane to propene over different polymorphs of gallium oxide[J]. J Catal, 2005, 232(1): 143-151. |
19 | ZHANG J, ZHOU R J, CHANG Q Y, et al. Tailoring catalytic properties of V2O3 to propane dehydrogenation through single-atom doping: a DFT study[J]. Catal Today, 2021, 368: 46-57. |
20 | LIU G, ZHAO Z J, WU T, et al. Nature of the active sites of VOx/Al2O3 catalysts for propane dehydrogenation[J]. ACS Catal, 2016, 6(8): 5207-5214. |
21 | ZHAO Z J, WU T F, XIONG C Y, et al. Hydroxyl-mediated non-oxidative propane dehydrogenation over VOx/gamma-Al2O3 catalysts with improved stability[J]. Angew Chem Int Ed, 2018, 57(23): 6791-6795. |
22 | CHEN S, CHANG X, SUN G D, et al. Propane dehydrogenation: catalyst development, new chemistry, and emerging technologies[J]. Chem Soc Rev, 2021, 50(5): 3315-3354. |
23 | OTROSHCHENKO T, SOKOLOV S, STOYANOVA M, et al. ZrO2-based alternatives to conventional propane dehydrogenation catalysts: active sites, design, and performance[J]. Angew Chem Int Ed, 2015, 54(52): 15880-15883. |
24 | ZHANG Y Y, ZHAO Y, OTROSHCHENKO T, et al. Control of coordinatively unsaturated Zr sites in ZrO2 for efficient C—H bond activation[J]. Nat Commun, 2018, 9(1): 3794. |
25 | DIXIT M, KOSTETSKYY P, MPOURMPAKIS G. Structure-activity relationships in alkane dehydrogenation on γ-Al2O3: site-dependent reactions[J]. ACS Catal, 2018, 8(12): 11570-11578. |
26 | LI C F, GUO X J, SHANG Q H, et al. Defective TiO2 for propane dehydrogenation[J]. Ind Eng Chem Res, 2020, 59(10): 4377-4387. |
27 | XIE Z, YU T T, SONG W Y, et al. Highly active nanosized anatase TiO2– x oxide catalysts in situ formed through reduction and Ostwald ripening processes for propane dehydrogenation[J]. ACS Catal, 2020, 10(24): 14678-14693. |
28 | ZHANG Y Y, ZHAO Y, OTROSHCHENKO T, et al. The effect of phase composition and crystallite size on activity and selectivity of ZrO2 in non-oxidative propane dehydrogenation[J]. J Catal, 2019, 371: 313-324. |
29 | OTROSHCHENKO T, BULAVCHENKO O, THANH H V, et al. Controlling activity and selectivity of bare ZrO2 in non-oxidative propane dehydrogenation[J]. Appl Catal A, 2019, 585: 117189. |
30 | ZHANG H L, JIANG Y X, WANG G W, et al. In-depth study on propane dehydrogenation over Al2O3-based unconventional catalysts with different crystal phases[J]. Mol Catal, 2022, 519: 112143. |
31 | OTROSHCHENKO T, KONDRATENKO E V. Effect of hydrogen and supported metal on selectivity and on-stream stability of ZrO2-based catalysts in non-oxidative propane dehydrogenation[J]. Catal Commun, 2020, 144: 106068. |
32 | SHARMA L, JIANG X, WU Z, et al. Elucidating the origin of selective dehydrogenation of propane on γ-alumina under H2S treatment and co-feed[J]. J Catal, 2021, 394: 142-156. |
33 | OTROSHCHENKO T, KONDRATENKO V A, RODEMERCK U, et al. ZrO2-based unconventional catalysts for non-oxidative propane dehydrogenation: factors determining catalytic activity[J]. J Catal, 2017, 348: 282-290. |
34 | XIAO L Q, XIE Z A, SONG S J, et al. Descriptor-guided design and experimental synthesis of metal-doped TiO2 for propane dehydrogenation[J]. Ind Eng Chem Res, 2021, 60(3): 1200-1209. |
35 | PERECHODJUK A, ZHANG Y Y, KONDRATENKO V A, et al. The effect of supported Rh, Ru, Pt or Ir nanoparticles on activity and selectivity of ZrO2-based catalysts in non-oxidative dehydrogenation of propane[J]. Appl Catal A, 2020, 602: 117731. |
36 | ZHANG Y Y, ZHAO Y, OTROSHCHENKO T, et al. Structure-activity-selectivity relationships in propane dehydrogenation over Rh/ZrO2 catalysts[J]. ACS Catal, 2020, 10(11): 6377-6388. |
37 | OTROSHCHENKO T, RODEMERCK U, LINKE D, et al. Synergy effect between Zr and Cr active sites in binary CrZrOx or supported CrOx/LaZrOx: consequences for catalyst activity, selectivity and durability in non-oxidative propane dehydrogenation[J]. J Catal, 2017, 356: 197-205. |
38 | HAN S L, ZHAO Y, OTROSHCHENKO T, et al. Unraveling the origins of the synergy effect between ZrO2 and CrOx in supported CrZrOx for propene formation in nonoxidative propane dehydrogenation[J]. ACS Catal, 2019, 10(2): 1575-1590. |
39 | JEON N, CHOE H, JEONG B, et al. Cu-promoted zirconia catalysts for non-oxidative propane dehydrogenation[J]. Appl Catal A, 2019, 586: 117211. |
40 | QU Y M, LI G G, ZHAO T, et al. Low-temperature direct dehydrogenation of propane over binary oxide catalysts: insights into geometric effects and active sites[J]. ACS Sustainable Chem Eng, 2021, 9(38): 12755-12765. |
41 | JEON N, CHOE H, JEONG B, et al. Propane dehydrogenation over vanadium-doped zirconium oxide catalysts[J]. Catal Today, 2020, 352: 337-344. |
42 | WANG P Z, XU Z K, WANG T H, et al. Unmodified bulk alumina as an efficient catalyst for propane dehydrogenation[J]. Catal Sci Technol, 2020, 10(11): 3537-3541. |
43 | SHANG Q H, LIU J H, LANG W Z, et al. Improved catalytic activity and chemical stability of defective TiO2 catalysts by doping rare earth metal Sc for propane dehydrogenation[J]. Ind Eng Chem Res, 2021, 60(35): 12811-12820. |
44 | YUN Y J, ARAUJO J R, MELAET G, et al. Activation of tungsten oxide for propane dehydrogenation and its high catalytic activity and selectivity[J]. Catal Lett, 2017, 147(3): 622-632. |
45 | PERECHODJUK A, KONDRATENKO V A, LUND H, et al. Oxide of lanthanoids can catalyse non-oxidative propane dehydrogenation: mechanistic concept and application potential of Eu2O3- or Gd2O3-based catalysts[J]. Chem Comm, 2020, 56(85): 13021-13024. |
46 | PAN Y. Influence of oxygen vacancies on the electronic and optical properties of zirconium dioxide from first-principles calculations[J]. J Electron Mater, 2019, 48(8): 5154-5160. |
47 | PAN Y, ZHANG J. Influence of noble metals on the electronic and optical properties of the monoclinic ZrO2: a first-principles study[J]. Vacuum, 2021, 187: 110112. |
48 | HUSSEIN Z A, ABBAS S K, AHMED L M. UV-A activated ZrO2 via photodecolorization of methyl green dye[J]. IOP Conf Ser : Mater Sci Eng, 2018, 454: 012132. |
49 | 杨淑梅, 邓淑华, 黄慧民, 等. 二氧化锆负载催化剂的应用[J]. 工业催化, 2003, 11(10): 39-42. |
YANG S M, DENG S H, HUANG H M, et al. Application of zirconia-supported catalysts[J]. Ind Catal, 2003, 11(10): 39-42. | |
50 | 王国营, 邵忠财, 高景龙, 等. 纳米二氧化锆在催化领域中的应用[J]. 化工中间体, 2007, 11: 24-28. |
WANG G Y, SHAO Z C, GAO J L, et al. Nano zirconia and its application in catalytic field[J]. Chem Intermed, 2007, 11: 24-28. | |
51 | 杨成, 张成华, 许建, 等. 氧化锆催化合成气直接转化制芳烃[J]. 燃料化学学报, 2016, 44(7): 837-844. |
YANG C, ZHANG C H, XU J, et al. One-step catalytic conversion of syngas to aromatics over ZrO2 catalyst[J]. J Fuel Chem Technol, 2016, 44(7): 837-844. | |
52 | LI K Z, CHEN J G. CO2 hydrogenation to methanol over ZrO2-containing catalysts: insights into ZrO2 induced synergy[J]. ACS Catal, 2019, 9(9): 7840-7861. |
53 | FATIMAH I, YANTI I, SUHARTO T E, et al. ZrO2-based catalysts for biodiesel production: a review[J]. Inorg Chem Commun, 2022, 143: 109808. |
54 | 刘华平, 叶素芳, 王呈呈, 等. ZrO2负载金属对CO2甲烷化的催化作用[J]. 低温与特气, 2016, 34(2): 1-6. |
LIU H P, YE S F, WANG C C, et al. Catalytic performance of zirconia supported metal catalysts on CO2 methanation-a review[J]. Low Temp Spec Gases, 2016, 34(2): 1-6. | |
55 | OTROSHCHENKO T, KONDRATENKO V A, RODEMERCK U, et al. Non-oxidative dehydrogenation of propane, n-butane, and isobutane over bulk ZrO2-based catalysts: effect of dopant on the active site and pathways of product formation[J]. Catal Sci Technol, 2017, 7(19): 4499-4510. |
56 | LIU Y, XIA C J, WANG Q, et al. Direct dehydrogenation of isobutane to isobutene over Zn-doped ZrO2 metal oxide heterogeneous catalysts[J]. Catal Sci Technol, 2018, 8(19): 4916-4494. |
57 | PERECHODJUK A, KONDRATENKO E V. Nonoxidative dehydrogenation of isobutane over MZrOx (M=La or Y) with supported Ir, Pt, Rh, or Ru: effects of promoters and supported metals[J]. Ind Eng Chem Res, 2020, 59(50): 21729-21735. |
58 | 王方平, 刘辉, 郭笑荣, 等. 氧化铝载体工业焙烧条件对孔性质的影响[J]. 石油炼制与化工, 2021, 52(2): 46-50. |
WANG F P, LIU H, GUO X R, et al. Effect of industrial calcination conditions on pore properties of alumina carriers[J]. Pet Process Petrochem, 2021, 52(2): 46-50. | |
59 | 季洪海, 隋宝宽, 凌凤香, 等. 棒状γ-氧化铝的合成及其负载NiMo催化剂的加氢脱金属性能[J]. 石油炼制与化工, 2020, 51(9): 79-85. |
JI H H, SUI B K, LING F X, et al. Synthesis of rod-like γ-alumina and hydrodemetallization property of NiMo/γ-alumina catalyst[J]. Pet Process Petrochem, 2020, 51(9): 79-85. | |
60 | KWAK J H, HU J Z, MEI D H, et al. Coordinatively unsaturated Al3+ centers as binding sites for active catalyst phases of platinum on γ-Al2O3[J]. Science, 2009, 325: 1670-1674. |
61 | TANG N F, CONG Y, SHANG Q H, et al. Coordinatively unsaturated Al3+ sites anchored subnanometric ruthenium catalyst for hydrogenation of aromatics[J]. ACS Catal, 2017, 7(9): 5987-5991. |
62 | KOSTETSKYY P, MPOURMPAKIS G. Structure-activity relationships in the production of olefins from alcohols and ethers: a first-principles theoretical study[J]. Catal Sci Technol, 2015, 5(9): 4547-4555. |
63 | KOSTESTKYY P, YU J, GORTE R J, et al. Structure-activity relationships on metal-oxides: alcohol dehydration[J]. Catal Sci Technol, 2014, 4(11): 3861-3869. |
64 | FANG Z T, WANG Y, DIXON D A. Computational study of ethanol conversion on Al8O12 as a model for γ-Al2O3[J]. J Phys Chem C, 2015, 119(41): 23413-23421. |
65 | RODEMERCK U, KONDRATENKO E V, OTROSHCHENKO T, et al. Unexpectedly high activity of bare alumina for non-oxidative isobutane dehydrogenation[J]. Chem Comm, 2016, 52(82): 12222-12225. |
66 | ZHAO D, LUND H, RODEMERCK U, et al. Revealing fundamentals affecting activity and product selectivity in non-oxidative propane dehydrogenation over bare Al2O3[J]. Catal Sci Technol, 2021, 11(4): 1386-1394. |
67 | ABDELGAID M, DEAN J, MPOURMPAKIS G. Improving alkane dehydrogenation activity on γ-Al2O3 through Ga doping[J]. Catal Sci Technol, 2020, 10(21): 7194-7202. |
68 | XIE Z A, LI Z, TANG P, et al. The effect of oxygen vacancies on the coordinatively unsaturated Al-O acid-base pairs for propane dehydrogenation[J]. J Catal, 2021, 397: 172-182. |
69 | ZHANG W, TIAN Y, HE H L, et al. Recent advances in the synthesis of hierarchically mesoporous TiO2 materials for energy and environmental applications[J]. Natl Sci Rev, 2020, 7(11): 1702-1725. |
70 | 周黎明, 岳海荣, 刘长军, 等. Pd/TiO2-ZnO异质结用于光催化CO2氧化乙烷脱氢制乙烯[J]. 应用化工, 2022, 51(3): 622-628. |
ZHOU L M, YUE H R, LIU C J, et al. Photocatalytic oxidative dehydrogenation of ethane to ethylene with CO2 over Pd/TiO2-ZnO heterojunction[J]. Appl Chem Ind, 2022, 51(3): 622-628. | |
71 | 帅树乙, 李婧, 张连辉, 等. 溶胶-凝胶法制备纳米二氧化钛及其光催化性能[J]. 化学世界, 2022, 63(4): 216-221. |
SHUAI S Y, LI J, ZHANG L H, et al. Preparation and photocatalytic performance of nano-sized titanium dioxide by sol-gel method[J]. Chem World, 2022, 63(4): 216-221. | |
72 | 黄锐, 菅泽, 韩生. 二氧化钛在储能中的设计和应用[J]. 应用技术学报, 2022, 22(3): 235-240. |
HUANG R, JIAN Z, HAN S. The design and application of titanium dioxide in energy storage[J]. J Technol, 2022, 22(3): 235-240. | |
73 | 刘庆祎, 肖桐, 孙文杰. 纳米二氧化钛强化的相变储能研究进展[J]. 化工学报, 2022, 73(5): 1863-1882. |
LIU Q Y, XIAO T, SUN W J. Progress in the research of phase change energy storage enhanced by titanium dioxide nanoparticles[J]. J Chem Eng, 2022, 73(5): 1863-1882. | |
74 | JIANG F, ZENG L, LI S R, et al. Propane dehydrogenation over Pt/TiO2-Al2O3 catalysts[J]. ACS Catal, 2014, 5(1): 438-447. |
75 | SONG W Y, YU K C, JI X Y, et al. Computational screening and experimental synthesis of doped TiO2 for propane dehydrogenation [J]. Energy Fuels, 2021, 35(23): 19624-19633. |
[1] | 张毅城, 查飞, 唐小华, 常玥, 田海锋, 郭效军. 非均相催化制备有机过氧化物的研究进展[J]. 应用化学, 2023, 40(6): 769-788. |
[2] | 李冰, 刘军辉, 宋亚坤, 李想, 郭旭明, 熊健. 金属-有机骨架材料在催化氨硼烷水解释氢中的研究进展[J]. 应用化学, 2023, 40(3): 329-340. |
[3] | 王路飞, 甄蒙蒙, 沈伯雄. 贫电解液下电催化剂对调控锂硫电池性能的研究进展[J]. 应用化学, 2023, 40(2): 188-209. |
[4] | 曹蓉, 夏杰桢, 廖漫华, 赵路超, 赵晨, 吴琪. 单原子催化剂在电化学合成氨中的理论研究进展[J]. 应用化学, 2023, 40(1): 9-23. |
[5] | 张丹, 尚润梅, 赵振涛, 李君华, 邢锦娟. V/Ce-Al2O3催化甲醇选择性氧化制备二甲氧基甲烷[J]. 应用化学, 2022, 39(9): 1429-1436. |
[6] | 王显, 杨小龙, 马荣鹏, 刘长鹏, 葛君杰, 邢巍. 单原子分散的Ir-N-C燃料电池阳极抗中毒催化剂[J]. 应用化学, 2022, 39(8): 1202-1208. |
[7] | 刘也, 郭少波, 梁艳莉, 葛红光, 马剑琪, 刘智峰, 刘波. 核壳型纳米复合材料CuFe2O4@NH2@Pt的制备及催化性能[J]. 应用化学, 2022, 39(8): 1237-1245. |
[8] | 张超. 单原子催化剂电催化还原二氧化碳研究进展[J]. 应用化学, 2022, 39(6): 871-887. |
[9] | 李世帅, 刘佳奇, 王佳一, 杨江峰. 多级孔Beta沸石合成研究进展[J]. 应用化学, 2022, 39(6): 912-926. |
[10] | 王岩, 张树聪, 汪兴坤, 刘志承, 王焕磊, 黄明华. 电解海水析氢反应过渡金属基催化剂的研究进展[J]. 应用化学, 2022, 39(6): 927-940. |
[11] | 李锋, 路世玉, 张宇, 郭丽君, 翟雪, 李翠勤. 硅烷基Schiff碱共价修饰纳米二氧化硅负载过渡金属催化乙烯齐聚性能[J]. 应用化学, 2022, 39(6): 949-959. |
[12] | 曹维锦, 白璐, 武兰兰, 李敬德, 宋术岩. 多壳层中空镍钴双金属磷化物纳米球用于高效电催化析氧[J]. 应用化学, 2022, 39(4): 666-672. |
[13] | 王雪, 王意波, 王显, 祝建兵, 葛君杰, 刘长鹏, 邢巍. 酸性电解水过程中氧析出反应的机理及铱基催化剂的研究进展[J]. 应用化学, 2022, 39(4): 616-628. |
[14] | 徐迪, 戴力, 姚文志, 杨光瑞, 王海荣, 宋鹏飞, 朱岩松. 烯烃聚合催化剂的研究进展[J]. 应用化学, 2022, 39(3): 355-373. |
[15] | 崔博洋, 武宏大, 余宗宝, 耿忠兴, 任铁强, 史春薇, 杨占旭. 磷化钼基催化剂的制备及其电解水中的应用[J]. 应用化学, 2022, 39(3): 439-450. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||