应用化学 ›› 2022, Vol. 39 ›› Issue (3): 439-450.DOI: 10.19894/j.issn.1000-0518.210086
崔博洋, 武宏大, 余宗宝, 耿忠兴, 任铁强, 史春薇, 杨占旭()
收稿日期:
2021-03-01
接受日期:
2021-06-23
出版日期:
2022-03-01
发布日期:
2022-03-15
通讯作者:
杨占旭
基金资助:
Bo-Yang CUI, Hong-Da WU, Zong-Bao YU, Zong-Xing GENG, Tie-Qiang REN, Chun-Wei SHI, Zhan-Xu YANG()
Received:
2021-03-01
Accepted:
2021-06-23
Published:
2022-03-01
Online:
2022-03-15
Contact:
Zhan-Xu YANG
About author:
zhanxuy@126.comSupported by:
摘要:
以十二胺插层的正交三氧化钼为前驱体,次磷酸钠分解产生的PH3作为磷源,在限域的空间内通过原位碳化磷化法,合成了“N掺杂MoP/石墨”复合材料。通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)、X射线光电子能谱分析(XPS)、拉曼光谱分析(Raman)和比表面积测试法(BET)等手段对700、800和900 ℃不同磷化温度所得催化剂样品进行微观结构及物理化学性质表征,并考察了其在电解水析氢反应(HER)中的催化性能。结果表明,十二胺分解一部分形成N掺杂的石墨作为导电架构,另一部分分解的氮掺杂磷化钼。800 ℃磷化样品具有最大的孔径比和电化学活性表面积,其表现出最佳的催化效果(过电势ηonset=111 mV,塔菲尔斜率b=70 mV/dec及27 h的优异稳定性),优于大多数报道的磷化钼催化剂。
中图分类号:
崔博洋, 武宏大, 余宗宝, 耿忠兴, 任铁强, 史春薇, 杨占旭. 磷化钼基催化剂的制备及其电解水中的应用[J]. 应用化学, 2022, 39(3): 439-450.
Bo-Yang CUI, Hong-Da WU, Zong-Bao YU, Zong-Xing GENG, Tie-Qiang REN, Chun-Wei SHI, Zhan-Xu YANG. Preparation of Molybdenum Phosphide⁃based Catalyst and Its Application in Water Electrolysis[J]. Chinese Journal of Applied Chemistry, 2022, 39(3): 439-450.
图3 α-MoO3(A)、MoO3/DDA(B)、MoP-700(C)、MoP-800(D)、MoP-900(E)和MoO2(F)的SEM图像
Fig.3 SEM images of α-MoO3 (A), MoO3/DDA (B), MoP-700 (C), MoP-800(D), MoP-900 (E) and MoO2 (F)
图6 MoP-700、MoP-800、MoP-900和MoO2Raman谱图(A);MoP-700(B)、MoP-800(C)、MoP-900(D)的D峰和G峰拟合谱图
Fig.6 Raman patterns of MoP-700, MoP-800, MoP-900 and MoO2 (A);The fitted Raman D and G peaks of MoP-700 (B), MoP-800 (C) and MoP-900 (D)
样品 Samples | 氮元素含量 X(N)/% | 碳元素含量 X (C)/% |
---|---|---|
MoP?700 | 0.497 | 3.370 |
MoP?800 | 0.447 | 3.638 |
MoP?900 | 0.416 | 3.068 |
表1 催化剂氮、碳元素含量
Table 1 The nitrogen and carbon content of the catalyst
样品 Samples | 氮元素含量 X(N)/% | 碳元素含量 X (C)/% |
---|---|---|
MoP?700 | 0.497 | 3.370 |
MoP?800 | 0.447 | 3.638 |
MoP?900 | 0.416 | 3.068 |
图7 MoP-700、MoP-800、MoP-900和MoO2的氮气吸附等温线(A)和孔径分布(B)
Fig.7 N2 adsorption-desorption isotherms of MoP-700, MoP-800, MoP-900 and MoO2 (A); Pore size distribution curves of MoP-700, MoP-800, MoP-900and MoO2 (B)
图8 MoP-700、MoP-800、MoP-900和MoO2的电化学测试:LSV曲线图(A);Tafel斜率(B);电化学阻抗EIS图(C);电化学活性面积ECSA图(D);计时电势图(E);1000圈循环前后析氢稳定性(F)
Fig.8 Electrochemical test results of MoP-700, MoP-800, MoP-900 and MoO2: Polarization curves(A); Tafel plots (B); Nyquist plots (C); Cdl of different materials (D); Electrolysis curve of MoP-800 at a fixed current of -10 mA for more than 27 h (E); The stability test of MoP-800 with an initial LSV curve and after 1000 cycles (F)
催化剂 Catalysts | 电解液 Electrolyte | 过电势 η10/(mA·cm-2) | 塔菲尔斜率 Tafel slope/(mV·dec-1) | 参考文献 Ref. |
---|---|---|---|---|
MoP?RGO | 0.5 mol/L H2SO4 | 117 | 62 | |
MoP@C@rGO | 0.5 mol/L H2SO4 | 168.9 | 79 | |
MoP@NPC?S | 0.5 mol/L H2SO4 | 141 | 61 | |
MoP/NPG | 0.5 mol/L H2SO4 | 148 | 49 | |
MoP/Mo2N | 0.5 mol/L H2SO4 | 89 | 51 | |
CoMoP | 0.5 mol/L H2SO4 | 39 | 73.3 | |
MoC?MoP/BCNC | 0.5 mol/L H2SO4 | 158 | 58 | |
MoP/Co2P | 0.5 mol/L H2SO4 | 140 | 80 | |
HF?MoSP?800 硫化钼/磷化钼复合材料 | 0.5 mol/L H2SO4 | 108 | 82 | |
MoP/N掺杂石墨 MoP/N doped graphite | 0.5 mol/L H2SO4 | 111 | 70 | 本文 This work |
表2 几种磷化钼基催化剂的HER参数比较
Table 2 Comparison of HER parameters of several molybdenum phosphide catalysts
催化剂 Catalysts | 电解液 Electrolyte | 过电势 η10/(mA·cm-2) | 塔菲尔斜率 Tafel slope/(mV·dec-1) | 参考文献 Ref. |
---|---|---|---|---|
MoP?RGO | 0.5 mol/L H2SO4 | 117 | 62 | |
MoP@C@rGO | 0.5 mol/L H2SO4 | 168.9 | 79 | |
MoP@NPC?S | 0.5 mol/L H2SO4 | 141 | 61 | |
MoP/NPG | 0.5 mol/L H2SO4 | 148 | 49 | |
MoP/Mo2N | 0.5 mol/L H2SO4 | 89 | 51 | |
CoMoP | 0.5 mol/L H2SO4 | 39 | 73.3 | |
MoC?MoP/BCNC | 0.5 mol/L H2SO4 | 158 | 58 | |
MoP/Co2P | 0.5 mol/L H2SO4 | 140 | 80 | |
HF?MoSP?800 硫化钼/磷化钼复合材料 | 0.5 mol/L H2SO4 | 108 | 82 | |
MoP/N掺杂石墨 MoP/N doped graphite | 0.5 mol/L H2SO4 | 111 | 70 | 本文 This work |
1 | HOSSEINI S E, WAHID M A. Hydrogen from solar energy: a clean energy carrier from a sustainable source of energy[J]. Int J Energy Res, 2019, 44(7): 4110-4131. |
2 | MCCRORY C C L, JUNG S, FERRER I M, et al. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices[J]. J Am Chem Soc, 2015(137): 4347-4357. |
3 | ZHANG H, LIU Y, WU H, et al. Open hollow Co-Pt clusters embedded in carbon nanoflake arrays for highly efficient alkaline water splitting[J]. J Mater Chem A, 2018, 6(41): 20214-20223. |
4 | LI J S, KONG L X, WU Z, et al. Polydopamine-assisted construction of cobalt phosphide encapsulated in N-doped carbon porous polyhedrons for enhanced overall water splitting[J]. Carbon, 2019, 145: 694-700. |
5 | YANG J Z, YU Z B, SUN W, et al. Efficient electrocatalytic performance of WP nanorods propagated on WS2/C for hydrogen evolution reduction[J]. ChemElectroChem, 2020, 7(14): 3082-3088. |
6 | DU J, WU H, WANG X, et al. Ternary MoS2/MoO3/C nanosheets as high-performance anode materials for lithium-ion batteries[J]. J Electron Mater, 2018, 47(11): 6767-6773. |
7 | 蒙阳, 杨婵, 彭娟. 基于铁、钴、镍金属磷化物纳米催化剂的碱性条件下电解水制氢的研究进展[J]. 应用化学, 2020, 37(7): 733-745. |
MENG Y, YANG C, PENG J. Progress in iron, cobalt and nickel-based metal phosphide nano-catalysts for hydrogen production under alkaline conditions[J]. Chinese J Appl Chem, 2020, 37(7): 733-745. | |
8 | 于鹏, 李景虹. 硫(磷)化物用于电化学析氢反应[J]. 应用化学, 2018, 35(9): 1093-1101. |
YU P, LI J H. Metal sulfide (phosphide) for electrocatalytic hydrogen evolution reaction[J]. Chinese J Appl Chem, 2018, 35(9): 1093-1101 | |
9 | LIU X, LU S X, XU H H, et al. Effects of polyethylene glycol and Cctric acid on preparation and hydrodechlorination activity of molybdenum phosphide[J]. Russ J Phys Chem A, 2018, 92(7): 1274-1278. |
10 | CHEN X, WANG D, WANG Z, et al. Molybdenum phosphide: a new highly efficient catalyst for the electrochemical hydrogen evolution reaction[J]. Chem Commun, 2014, 50(79): 11683-11685. |
11 | DU H, KONG R M, GUO X, et al. Recent progress in transition metal phosphides with enhanced electrocatalysis for hydrogen evolution[J]. Nanoscale, 2018, 10(46): 21617-21624. |
12 | GE R, HUO J, LIAO T, et al. Hierarchical molybdenum phosphide coupled with carbon as a whole pH-range electrocatalyst for hydrogen evolution reaction[J]. Appl Catal B: Environ, 2019, 260: 118196. |
13 | GUO S,TAN W, QIU J, et al. Classification of spatially confined reactions and the electrochemical applications of molybdenum-based nanocomposites[J]. Aust J Chem, 2020, 73(7):578-600. |
14 | ZHUANG Z, LI Y, LI Z, et al. MoB/g-C3N4 interface materials as a Schottky catalyst to boost hydrogen evolution[J]. Angew Chem, 2018, 57(2): 496-500. |
15 | JING Y, PAN Q, CHENG Z, et al. Direct thermal intercalation of amine into layered MoO3[J]. MSEB, 2007, 138(1): 55-59. |
16 | QIU J, YANG Z, LI Y. N-doped carbon encapsulated ultrathin MoO3 nanosheets as superior anodes with high capacity and excellent rate capability for Li-ion batteries[J]. J Mater Chem A, 2015, 3(48): 24245-24253. |
17 | LALIK E, DAVID W I F, BARNES P, et al. Mechanisms of reduction of MoO3 to MoO2 reconciled?[J]. J Phys Chem B, 2001, 105(38): 9153-9156. |
18 | LI J S, ZHANG S, SHA J Q, et al. Confined molybdenum phosphide in P-oped porous carbon as efficient electrocatalysts for hydrogen evolution[J]. ACS Appl Mater Interfaces, 2018, 10: 17140-17146. |
19 | YANG J, ZHANG F, WANG X, et al. Porous molybdenum phosphide nano-octahedrons derived from confined phosphorization in UIO-66 for efficient hydrogen evolution[J]. Angew Chem Int Ed, 2016, 55(41): 12854-12858. |
20 | HUANG Z, HOU H, WANG C, et al. Molybdenum phosphide: a conversion-type anode for ultralong-life sodium-ion batteries[J]. Chem Mater, 2017, 29(17): 7313-7322. |
21 | XING Z, LIU Q, ASIRI A M, et al. Closely interconnected etwork of molybdenum phosphide nanoparticles: a highly efficient electrocatalyst for generating hydrogen from water[J]. Adv Mater, 2014, 26(32): 5702-5707. |
22 | OJHA K, SHARMA M, KOLEV H, et al. Reduced graphene oxide and MoP composite as highly efficient and durable electrocatalyst for hydrogen evolution in both acidic and alkaline media[J]. Catal Sci Technol, 2017, 7(3): 668-676. |
23 | PU Z, ZHANG C, AMIINU I S, et al. General strategy for the synthesis of transition-metal phosphide/N-doped carbon frameworks for hydrogen and oxygen evolution[J]. ACS Appl Mater Interaces, 2017, 9(19): 16187-16193. |
24 | ZHENG Y, JIAO Y, LI L H, et al. Toward design of synergistically active carbon-based catalysts for electrocatalytic hydrogen evolution[J]. ACS Nano, 2014, 8(5): 5290-5296. |
25 | WANG S, WANG J, ZHU M, et al. Molybdenum-carbide-modified nitrogen-doped carbon vesicle encapsulating nickel nanoparticles: a highly efficient, low-cost catalyst for hydrogen evolution reaction[J]. J Am Chem Soc, 2015, 137(50): 15753-15759. |
26 | LIN H, LIU N, SHI Z, et al. Cobalt-doping in molybdenum-carbide nanowires toward efficient electrocatalytic hydrogen evolution[J]. Adv Funct Mater, 2016, 26(31): 5590-5598. |
27 | WAN C, LENOARD B M. Iron-doped molybdenum carbide catalyst with high activity and stability for the hydrogen evolution reaction[J]. Chem Mater, 2015, 27(12): 4281-4288. |
28 | LV C, WANG J, HUANG Q L, et al. Facile synthesis of hollow carbon microspheres embedded with molybdenum carbide nanoparticles as an efficient electrocatalyst for hydrogen generation[J]. RSC Adv, 2016, 6(79): 75870-75874. |
29 | ASHOK A, KUMAR A, PONRAJ J, et al. Preparation of mesoporous/microporous MnCo2O4 and nanocubic MnCr2O4 using a single step solution combustion synthesis for bifunction oxygen electrocatalysis[J]. J Electrochem Soc, 2020, 167(5): 054507. |
30 | FIELDS M, TSAI C, CHEN L D, et al. Scaling relations for adsorption energies on doped molybdenum phosphide surfaces[J]. ACS Catal, 2017, 7(4): 2528-2534. |
31 | ZHUANG Z, GIELS S A, ZHENG J, et al. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte[J]. Nat Commun, 2016, 7(1): 1-8. |
32 | WANG H, DAI H. Strongly coupled inorganic-nano-carbon hybrid materials for energy storage[J]. Chem Soc Rev, 2013, 42(7): 3088-3113. |
33 | PU Z, AMIINU I S, LIU X, et al. Ultrastable nitrogen-doped carbon encapsulating molybdenum phosphide nanoparticles as highly efficient electrocatalyst for hydrogen generation[J]. Nanoscale, 2016, 8(39): 17256-17261. |
34 | LAN K, WANG X, YANG H, et al. Ultrafine MoP nanoparticles well embedded in carbon nanosheets as electrocatalyst with high active site density for hydrogen evolution[J]. ChemElectroChem, 2018, 5(16): 2256-2262. |
35 | LIU B, LI H, CAO B, et al. Few layered N, P dual‐doped carbon-encapsulated ultrafine MoP nanocrystal/MoP cluster hybrids on carbon cloth: an ultrahigh active and durable 3D self-supported integrated electrode for hydrogen evolution reaction in a wide pH range[J]. Adv Funct Mater, 2018, 28(30): 1801527. |
36 | 冯博. 二硫化钼复合材料的制备及电催化析氢性能研究[D]. 哈尔滨: 黑龙江大学, 2019. |
FENG B. Preparation and electrocatalytic performance of molybdenum disulfide composites for hydrogen evolution[D]. Harbin: Heilongjiang University, 2019. | |
37 | WU Z, WANG J, ZHU J, et al. Highly efficient and stable MoP-RGO nanoparticles as electrocatalysts for hydrogen evolution[J]. Electrochim Acta, 2017, 232: 254-261. |
38 | ZHANG Y, YANG J, DONG Q, et al. Highly dispersive MoP nanoparticles anchored on rGO nanosheets for efficient hydrogen evolution reaction electrocatalyst[J]. ACS Appl Mater Interfaces, 2018, 10(31): 26258-26263. |
39 | CHI J Q, GAO W K, ZHANG L M, et al. Induced phosphorization derived well-dispersed MoP nanoparticles encapsulated in hollow N-doped carbon nanospheres for efficient hydrogen evolution[J]. ACS Sustain Chem Eng, 2018, 6(6): 7676-7686. |
40 | GE R, HUO J, LIAO T, et al. Hierarchical molybdenum phosphide coupled with carbon as a whole pH-range electrocatalyst for hydrogen evolution reaction[J]. Appl Catal B: Environ, 2020, 260: 118196. |
41 | FU H, GU Y, WU A, et al. Two dimensional porous molybdenum phosphide/nitride heterojunction nanosheets for pH-universal hydrogen evolution reaction[J]. Angew Chem Int Ed, 2021, 60 (12): 6673-6681. |
42 | LI D, LIU D, ZHAO S, et al. Tuning of metallic valence in CoMoP for promoting electrocatalytic hydrogen evolution[J]. Int J Hydrogen Energy, 2019, 44(59): 31072-31081. |
43 | CHEN N N, MO Q, HE L, et al. Heterostructured MoC-MoP/N-doped carbon nanofibers as efficient electrocatalysts for hydrogen evolution reaction[J]. Electrochim Acta, 2019, 299: 708-716. |
44 | ZHOU P, ZHANG Y, YE B, et al. MoP/Co2P hybrid nanostructure anchored on carbon fiber paper as an effective electrocatalyst for hydrogen evolution[J]. ChemCatChem, 2019, 11(24): 6086-6091. |
45 | WU A, TIAN C, YAN H, et al. Hierarchical MoS2@MoP core-shell heterojunction electrocatalysts for efficient hydrogen evolution reaction over a broad pH range[J]. Nanoscale, 2016, 8(21): 11052-11059. |
[1] | 张毅城, 查飞, 唐小华, 常玥, 田海锋, 郭效军. 非均相催化制备有机过氧化物的研究进展[J]. 应用化学, 2023, 40(6): 769-788. |
[2] | 于宜辰, 张雨宸, 张耀远, 吴芹, 史大昕, 陈康成, 黎汉生. 本体金属氧化物在丙烷无氧脱氢中的研究进展[J]. 应用化学, 2023, 40(6): 789-805. |
[3] | 李冰, 刘军辉, 宋亚坤, 李想, 郭旭明, 熊健. 金属-有机骨架材料在催化氨硼烷水解释氢中的研究进展[J]. 应用化学, 2023, 40(3): 329-340. |
[4] | 王路飞, 甄蒙蒙, 沈伯雄. 贫电解液下电催化剂对调控锂硫电池性能的研究进展[J]. 应用化学, 2023, 40(2): 188-209. |
[5] | 曹蓉, 夏杰桢, 廖漫华, 赵路超, 赵晨, 吴琪. 单原子催化剂在电化学合成氨中的理论研究进展[J]. 应用化学, 2023, 40(1): 9-23. |
[6] | 张丹, 尚润梅, 赵振涛, 李君华, 邢锦娟. V/Ce-Al2O3催化甲醇选择性氧化制备二甲氧基甲烷[J]. 应用化学, 2022, 39(9): 1429-1436. |
[7] | 王显, 杨小龙, 马荣鹏, 刘长鹏, 葛君杰, 邢巍. 单原子分散的Ir-N-C燃料电池阳极抗中毒催化剂[J]. 应用化学, 2022, 39(8): 1202-1208. |
[8] | 刘也, 郭少波, 梁艳莉, 葛红光, 马剑琪, 刘智峰, 刘波. 核壳型纳米复合材料CuFe2O4@NH2@Pt的制备及催化性能[J]. 应用化学, 2022, 39(8): 1237-1245. |
[9] | 杜卫民, 刘欣, 朱琳, 付佳敏, 郭文山, 杨晓晴, 双培硕. 三元镍基硫属化物纳米棒阵列的简单合成及其高效的电催化析氧性能[J]. 应用化学, 2022, 39(8): 1252-1261. |
[10] | 张超. 单原子催化剂电催化还原二氧化碳研究进展[J]. 应用化学, 2022, 39(6): 871-887. |
[11] | 李世帅, 刘佳奇, 王佳一, 杨江峰. 多级孔Beta沸石合成研究进展[J]. 应用化学, 2022, 39(6): 912-926. |
[12] | 王岩, 张树聪, 汪兴坤, 刘志承, 王焕磊, 黄明华. 电解海水析氢反应过渡金属基催化剂的研究进展[J]. 应用化学, 2022, 39(6): 927-940. |
[13] | 李锋, 路世玉, 张宇, 郭丽君, 翟雪, 李翠勤. 硅烷基Schiff碱共价修饰纳米二氧化硅负载过渡金属催化乙烯齐聚性能[J]. 应用化学, 2022, 39(6): 949-959. |
[14] | 曹维锦, 白璐, 武兰兰, 李敬德, 宋术岩. 多壳层中空镍钴双金属磷化物纳米球用于高效电催化析氧[J]. 应用化学, 2022, 39(4): 666-672. |
[15] | 陶荟冰, 田震, 谢勇, 孙瑜, 汪莉, 康卓, 张跃. 电解水催化材料动态构效关系的原位拉曼研究进展[J]. 应用化学, 2022, 39(4): 528-539. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||