[1] YANG S L, YUAN Y Y, SUN P P, et al. 3D water-stable europium metal organic frameworks as a multi-responsive luminescent sensor for high-efficiency detection of Cr2O2-7, MnO-4, Cr3+ ions and SDBS in aqueous solution[J]. New J Chem, 2018, 42(24): 20137-20143. [2] WARREN G, SCHULTZ P, BANCROFT D et al. Mutagenicity of a series of hexacoordinate chromium(Ⅲ) compounds[J]. Mutation Res/Genet Toxicol, 1981, 90(2): 111-118. [3] GURLEYUK H, WALLSCHLAGER D. Determination of chromium(Ⅲ) and chromium(Ⅵ) using suppressed ion chromatography inductively coupled plasma mass spectrometry[J].J Anal Atom Spectrom, 2001, 16(9): 926-930. [4] CALEVRO F, CAMPANI S, RAGGHIANTI M, et al. Tests of toxicity and teratogenicity in biphasic vertebrates treated with heavy metals (Cr3+, Al3+, Cd2+)[J]. Chemosphere, 1998, 37(14/15): 3011-3017. [5] GU T Y, DAI M, YOUNG D J, et al. Luminescent Zn(Ⅱ) coordination polymers for highly selective sensing of Cr(Ⅲ) and Cr(Ⅵ) inwater[J]. Inorg Chem, 2017, 56(8): 4668-4678. [6] GUO X Y, ZHAO F, LIU J J, et al. An ultrastable zinc(Ⅱ)-organic framework as a recyclable multi-responsive luminescent sensor for Cr(Ⅲ), Cr(Ⅵ) and 4-nitrophenol in the aqueous phase with high selectivity and sensitivity[J]. J Mater Chem A, 2017. 5(37): 20035-20043. [7] ZAMANI H A, RAJABZADEH G, MASRORNIA M, et al. Determination of Cr3+ ions in biological and environmental samples by a chromium(Ⅲ) membrane sensor based on 5-amino-1-phenyl-1H-pyrazole-4-carboxamide[J]. Desalination, 2009, 249(2): 560-565. [8] ABEDI M R, ZAMANI H A, GANJALI M R, et al. Cr(Ⅲ) ion-selective membrane sensor based on 1,3-diamino-2-hydroxypropane-N,N,N',N'- tetraacetic acid[J]. Sens Lett, 2007, 5(3/4): 516-521. [9] LIU J J, JI G F, XIAO J N, et al. Ultrastable 1D europium complex for simultaneous and quantitative sensing of Cr(Ⅲ) and Cr(Ⅵ) ions in aqueous solution with high selectivity and sensitivity[J]. Inorg Chem, 2017, 56(7): 4197-4205. [10] YANG Y, FENG Y, WANG Y Z, et al. A novel ratiometric fluorescent probe for selective detection of Hg2+, Cr3+ and Al3+ and its bioimaging application in living cells[J]. Sens Actuators B, 2017, 253: 1055-1062. [11] DIAO Q, MA P, LV L, et al. A novel fluorescent probe for Cr3+ based on rhodamine-crown ether conjugate and its application to drinking water examination and bioimaging[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2016, 156: 15-21. [12] DHARA A, GUCHHAIT N, KAR S K. A novel Cr3+ fluorescence turn-on probe based on rhodamine and isatin framework[J]. J Fluoresc(6), 2015, 25: 1921-1929. [13] ALAM R, BHOWMICK R, ISLAM A, et al. A rhodamine based fluorescent trivalent sensor (Fe3+, Al3+, Cr3+) with potential applications for live cell imaging and combinational logic circuits and memory devices[J]. New J Chem, 2017, 41(16): 8359-8369. [14] LI X M, ZHAO R R, YANG Y, et al. A Rhodamine-based fluorescent sensor for chromium ions and its application inbioimaging[J]. Chinese Chem Lett, 2017, 28(6): 1258-1261. [15] MABHAI S, DOLAI M, DEY S K, et al. Rhodamine-azobenzene based single molecular probe for multiple ions sensing: Cu2+, Al3+, Cr3+ and its imaging in human lymphocyte cells[J]. Spectrochim Acta Part A, 2019, 219: 319-332. [16] 侯淑华, 刘冬, 曲忠国, 等. 一种罗丹明衍生物的合成及其对三价金属离子(Fe3+、Cr3+和Al3+)的识别[J]. 应用化学, 2017, 34(5): 606-610. HOU S H, LIU D, QU Z G, et al. Synthesis of a novel rhodamine-based probe and its selective detection of trivalent metallic ions[J]. Chinese J Appl Chem, 2017, 34(5): 606-610. [17] SHELLAIAH M, SIMON T, SUN K W, et al. Simple bare gold nanoparticles for rapid colorimetric detection of Cr3+ ions in aqueous medium with real sample applications[J]. Sens Actuators B, 2016, 226: 44-51. [18] ZHOU Z G, LI Y, WU Y Q. Ratiometric fluorescence probe for two-photon bioimaging of Cr3+ in living cells[J]. Tetrahedron Lett, 2014, 55(30): 4075-4077. [19] BORASE P N, THALE P B, SAHOO S K, et al. An “off-on” colorimetric chemosensor for selective detection of Al3+, Cr3+ and Fe3+: its application in molecular logic gate[J]. Sens Actuators B, 2015, 215: 451-458. [20] KUMAWAT L K, MERGU N, ASIF M, et al. Novel synthesized antipyrine derivative based “naked eye” colorimetric chemosensors for Al3+ and Cr3+[J]. Sens Actuators B, 2016, 231: 847-859. [21] World Health Organization(WHO), chromium in drinking water, guidelines for dringking-water quality, 2nd Ed., World Health Organization, Geneva, 2004. [22] ZHANG M, GONG L, SUN C, et al. A new fluorescentcolorimetric chemosensor based on a Schiff base for detecting Cr3+, Cu2+, Fe3+ and Al3+ ions[J]. Spectrochim Acta Part A, 2019. 214: 7-13. [23] YAKUSHEV A A, AVERIN A D, SAKOVICH M V, et al. Synthesis of the porphyrin-calixarene conjugates via Pd-catalyzed amination and their evaluation as fluorescent chemosensors[J]. J Porphyrins Phthalocyanines, 2019, 23(11/12): 1551-1562. [24] ADHIKARI S, TA S, GHOSH A, et al. A 1,8 Naphthalimide anchor rhodamine B based FRET probe for ratiometric detection of Cr3+ ion in living cells[J]. J Photochem Photobiol A, 2019, 372: 49-58. [25] WU S, ZHANG K, WANG Y, et al. A novel Cr3+ turn-on probe based on naphthalimide and BINOL framework[J]. Tetrahedron Lett, 2014, 55(2): 351-353. [26] GUPTA V K, MERGU N, SINGH A K, et al. Rhodamine-derived highly sensitive and selective colorimetric and off-on optical chemosensors for Cr3+[J]. Sens Actuators B, 2015, 220: 420-432. |