[1] PARK J, CHOI W, JANG K, et al. High-sensitivity detection of silver ions using oligonucleotide-immobilized oscillator[J]. Biosens Bioelectron, 2013, 41: 471-476. [2] THAMARAISELVI P, DURAIPANDY N, KIRAN M S, et al. Triarylamine rhodanine derivatives as red emissive sensor for discriminative detection of Ag+ and Hg2+ ions in buffer-free aqueous solutions[J]. ACS Sustainable Chem Eng, 2019, 7: 9865-9874. [3] BARRIADA J L, TAPPIN A D, EVANS E H, et al. Dissolved silver measurements in seawater[J]. Trac-Trends Anal Chem, 2007, 26: 809-817. [4] RATTE H T. Bioaccumulation and toxicity of silver compounds: a review [J]. Environ Toxicol Chem, 1999, 18: 89-108. [5] TANG H Y, GAO Y, LI B, et al. Reaction-based colorimetric and ratiometric fluorescent probe for highly selective detection of silver ions[J]. Sens Actuators B, 2018, 270: 562-569. [6] ZHANG Y, JIANG H, WANG X. Cytidine-stabilized gold nanocluster as a fluorescence turn-on and turn-off probe for dual functional detection of Ag+ and Hg2+[J]. Anal Chim Acta, 2015, 870: 1-7. [7] LÓPEZ-LÓPEZ J A, HERCE-SESA B, MORENO C, Solvent bar micro-extraction with graphite atomic absorption spectrometry for the determination of silver in ocean water[J]. Talanta, 2016, 159: 117-121. [8] YUAN M, PENG X, GE F, et al. Simplified design for solution anode glow discharge atomic emission spectrometry device for highly sensitive detection of Ag, Bi, Cd, Hg, Pb, Tl, and Zn[J]. Microchem J, 2020, 155: 104785. [9] LAI C Z, FIERKE M A, DA COSTA, R C, et al. Highly selective detection of silver in the low ppt range with ion-selective electrodes based on ionophore-doped fluorous membranes[J]. Anal Chem, 2010, 82: 7634-7640. [10] GRAFE M, DONNER E, COLLINS R N, et al. Speciation of metal (loid)s in environmental samples by X-ray absorption spectroscopy: a critical review[J]. Anal Chim Acta, 2014, 822: 1-22. [11] BALDO M A, DANIELE S, CIANI I, et al. Remote stripping analysis of lead and copper by a mercury-coated platinum microelectrode[J]. Electroanalysis, 2004, 16: 360-366. [12] BALCAEN L, BOLEA-FERNANDEZ E, RESANO M, et al. Inductively coupled plasma-tandem mass spectrometry (ICP-MS/MS): a powerful and universal tool for the interference-free determination of (ultra)trace elements-a tutorial review[J]. Anal Chim Acta, 2015, 894: 7-19. [13] LIU X, ZHU Z, BAO Z, et al. Simultaneous sensitive determination of selenium, silver, antimony, lead, and bismuth in microsamples based on liquid spray dielectric barrier discharge plasma-induced vapor generation[J]. Anal Chem, 2019, 91: 928-934. [14] LIU R, WU D, LIU S, et al. An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers[J]. Angew Chem Int Ed, 2009, 48: 4598-4601. [15] YANG S T, WANG X, WANG H, et al. Carbon dots as nontoxic and high-performance fluorescence imaging agents[J]. J Phys Chem C, 2009, 113: 18110-8114. [16] 孟雅婷, 焦媛, 张羱, 等. 红色荧光碳点的制备及其对过硫酸根的检测[J]. 应用化学, 2020, 37(6): 719-725. MENG Y T, JIAO Y, ZHANG Y, et al. Synthesis of red emission fluorescent carbon dots and its application for detection of persulfate[J]. Chinese J Appl Chem, 2020, 37(6): 719-725. [17] 黄小梅, 邓祥. 新型荧光碳点的制备及其在Hg2+检测中的应用[J]. 应用化学, 2019, 36(5): 603-610. HUANG X M, DENG X. Preparation of new photoluminescent carbon dots and its application in Hg2+ detection[J]. Chinese J Appl Chem, 2019, 36(5): 603-610. [18] CAO L, WANG X, MEZIANI M J, et al. Carbon dots for multiphoton bioimaging[J]. J Am Chem Soc, 2007, 129: 11318-11319. [19] ZHU A W, QU Q, SHAO X L,et al. Carbon-dot-based dual-emission nanohybrid produces a ratiometric fluorescent sensor for in vivo imaging of cellular copper ions[J]. Angew Chem Int Ed, 2012, 51: 7185-7189. [20] ZUO G, XIE A, LI J, et al. Large emission red-shift of carbon dots by fluorine doping and their applications for red cell imaging and sensitive intracellular Ag+ detection[J]. J Phys Chem C, 2017, 121: 26558-26565. [21] 李俊芬, 王冬秀, 李鹏霞, 等.一步水热法合成荧光碳点检测锰(Ⅶ) [J]. 分析化学, 2019, 47: 731-738. LI J F, WANG D X, LI P X, et al. One-step hydrothermal synthesis of carbon dots for detection of manganese(VII)[J]. Chinese J Anal Chem, 2019,47: 731-738. [22] 贾晶, 路雯婧, 李林, 等. 橘色荧光碳点用于检测亚硝酸盐[J]. 分析化学, 2019, 47: 560-566. JIA J, LU W, LI L, et al. Orange luminescent carbon dots as fluorescent probe for detection of nitrite[J]. Chinese J Anal Chem, 2019, 47: 560-566. [23] SONG Y C, SHI W, CHEN W, et al. Fluorescent carbon nanodots conjugated with folic acid for distinguishing folate-receptor-positive cancer cells from normal Cells[J]. J Mater Chem, 2012, 22: 12568-12573. [24] LIU C J, ZHANG P, ZHAI X Y, et al. Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence[J]. Biomaterials, 2012, 33: 3604-3613. [25] KUBIN R F, FLETCHER A N. Fluorescence quantum yields of some rhodamine dyes[J]. J Lumin, 1982, 27: 455-462. [26] DONG Y Q, PANG H C, YANG H B, et al. Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission[J]. Angew Chem Int Ed, 2013, 52: 7800-7804. [27] PANG Y, GAO H, WU S, et al. Facile synthesis the nitrogen and sulfur co-doped carbon dots for selective fluorescence detection of heavy metal ions[J]. Mater Lett, 2017, 193: 236-239. [28] YANG S, SUN J, LI X, et al. Large-scale fabrication of heavy doped carbon quantum dots with tunable-photoluminescence and sensitive fluorescence detection[J]. J Mater Chem A, 2014, 2: 8660-8667. [29] YANG X, CUI F, REN R, et al. Red-emissive carbon dots for “switch-on” dual function sensing platform rapid detection of ferric ions and l-cysteine in living cells[J]. ACS Omega, 2019, 4: 12575-12583. [30] VEDAMALAI M, PERIASAMY A P, WANG C W, et al. Carbon nanodots prepared from o-phenylenediamine for sensing of Cu2+ ions in cells[J]. Nanoscale, 2014, 6: 13119-13125. [31] LIU X, ZHANG N, BING T, et al. Carbon dots based dual-emission silica nanoparticles as a ratiometric nanosensor for Cu2+[J]. Anal Chem, 2014, 86: 2289-2296. [32] FAN C, AO K, LV P, et al. Fluorescent nitrogen-doped carbon dots via single-step synthesis applied as fluorescent probe for the detection of Fe3+ ions and anti-counterfeiting inks[J]. Nano, 2018, 13: 1850097. [33] DAM B V, NIE H, JU B, et al. Excitation-dependent photoluminescence from single-carbon dots[J]. Small, 2017, 13(48): 1702098. [34] KRYSMANN M J, KELARAKIS A, DALLAS P, et al. Formation mechanism of carbogenic nanoparticles with dual photoluminescence emission[J]. J Am Chem Soc, 2012, 134: 747-750. [35] LIU H, SUN Y, LI Z, et al. Scifinder-guided rational design of fluorescent carbon dots for ratiometric monitoring intracellular pH fluctuations under heat shock[J]. Chinese Chem Lett, 2019, 30:1647-1651. [36] LIU H, SUN Y, LI Z,et al. Lysosome-targeted carbon dots for ratiometric imaging of formaldehyde in living cells[J]. Nanoscale, 2019, 11: 8458-8463. [37] JIAO Y, GAO Y, MENG Y, et al. One-step synthesis of label-free ratiometric fluorescence carbon dots for the detection of silver ions and glutathione and cellular imaging applications[J]. ACS Appl Mater Interfaces, 2019, 11: 16822-16829. |