[1] GRÄTZEL M. Photoelectrochemical cells[J]. Nature, 2001, 414(6861): 338-344. [2] HAGFELDT A, BOSCHLOO G, SUN L, et al. Dye-sensitized solar cells[J]. Chem Rev, 2010, 110(2): 6595-6663. [3] YELLA A, LEE H W, TSAO H N, et al. Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency[J]. Science, 2011, 334(6056): 629-634. [4] URBANI M, GRÄTZEL M, NAZEERUDDIN M K, et al. Meso-substituted porphyrins for dye-sensitized solar cells[J]. Chem Rev, 2014, 114: 12330-12396. [5] BRÉDAS J L, NORTON J E, CORNIL J, et al. Molecular understanding of organic solar cells: the challenges[J]. Acc Chem Res, 2009, 42(11): 1691-1699. [6] O'REGAN B, GRÄTZEL M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Nature, 1991, 353(6346): 737-740. [7] HAGBERG D P, YUM J H, LEE H, et al. Molecular engineering of organic sensitizers for dye-sensitized solar cell applications[J]. J Am Chem Soc, 2008, 130(19): 6259-6266. [8] 顾承志, 孟舒献, 冯亚青. 卟啉敏化太阳能电池研究进展[J]. 有机化学, 2015, 35(6): 1229-1237. GU C Z, MENG S X, FENG Y Q. Progress of porphyrin sensitizers for dye-sensitized solar cells[J]. Chinese J Org Chem, 2015, 35(6): 1229-1237. [9] KANG S H, JEONG M J, EOM Y K, et al. Porphyrin sensitizers with donor structural engineering for superior performance dye-sensitized solar cells and tandem solar cells for water splitting applications[J]. Adv Energy Mater, 2017, 7: 1602117. [10] 吴水星, 张建钊, 苏欣, 等. 染料敏化太阳能电池中额外给体引入对经典D-π-A 型敏化剂性能影响的理论研究[J]. 高等学校化学学报, 2015, 36(10): 2002-2008. WU S X, ZHANG J Z, SU X, et al. Theoretical investigation on the effect of extra donor on the performance of D-π-A sensitizer in dye-sensitized solar cell[J]. Chem J Chinese Univ, 2015, 36(10): 2002-2008. [11] MATHEW S, YELLA A, GAO P, et al. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers[J]. Nat Chem, 2014, 6(3): 242-247. [12] ICHIKI T, MATSUO Y, NAKAMURA E. Photostability of a dyad of magnesium porphyrin and fullerene and its application to photocurrent conversion[J]. Chem Commun, 2013, 49(3): 279-281. [13] PANDA M K, LADOMENOU K, COUTSOLELOS A G. Porphyrins in bio-inspired transformations: light-harvesting to solar cell[J]. Coord Chem Rev, 2012, 256(21/22): 2601-2627. [14] 吴春晓, 艾心, 陈英鑫, 等. 卤素原子的引入对二苯甲基自由基光稳定性、光物理性质及电致发光器件性能的影响[J]. 高等学校化学学报,2020, 5(41): 972-980. WU C X, AI X, CHEN Y X, et al. Effects of introducing halogen atoms to biphenylmethyl radical on photostability, photophysical and electroluminescent properties[J]. Chem J Chinese Univ, 2020, 5(41): 972-980. [15] CHEN C, YANG X, CHENG M, et al. Degradation of cyanoacrylic acid-based organic sensitizers in dye-sensitized solar cells[J]. ChemSusChem, 2013, 6(7): 1270-1275. [16] GOU F L, JIANG X, FANG R, et al. Strategy to improve photovoltaic performance of DSSC sensitized by zinc prophyrin using salicylic acid as a tridentate anchoring group[J]. ACS Appl Mater Interfaces, 2014, 6(9): 6697-6703. [17] ROCHFORD J, CHU D, HAGFELDT A, et al. Tetrachelate porphyrin chromophores for metal oxide semiconductor sensitization: effect of the spacer length and anchoring group position[J]. J Am Chem Soc, 2007, 129(15): 4655-4665. [18] CHOI M S, YAMAZAKI T, YAMAZAKI I, et al. Bioinspired molecular design of light-harvesting multiporphyrin arrays[J]. Angew Chem Int Ed, 2004, 43(2): 150-158. [19] 贾海浪, 彭智杰, 李珊珊, 等. 锌卟啉自组装在染料敏化太阳能电池中的应用[J]. 无机化学学报, 2019, 12(35): 2337-2345. JIA H L, PENG Z J, LI S S, et al. Self-assembly with zinc porphyrin antenna for dye-sensitized solar cells[J]. Chinese J Inorg Chem, 2019, 12(35): 2337-2345. [20] KC C B, STRANIUS K, D'SOUZA P, et al. Sequential photoinduced energy and electron transfer directed improved performance of the supramolecular solar cell of a zinc porphyrin-zinc phthalocyanine conjugate modified TiO2 surface[J]. J Phys Chem C, 2013, 117(2): 763-773. [21] WU Y, LIU J C, GUO W B, et al. Three horizontal anchor porphyrins for dye-sensitized solar cells: an optical, electrochemical and photovoltaic investigation[J]. Polyhedron 2016, 117: 155-160. [22] WU Y, ZHANG J X, FENG X X, et al. A novel self-assembly with horizontal anchor porphyrin for supramolecular solar cells[J]. RSC Adv, 2016, 6(65): 60773-60779. [23] WANG P, ZAKEERUDDIN S M, COMTE P, et al. Enhance the performance of dye-sensitized solar cells by co-grafting amphiphilic sensitizer and hexadecylmalonic acid on TiO2 nanocrystals[J]. J Phys Chem B, 2003, 107(51): 14336-14341. [24] TRACHSEL D. Synthesis of novel (Phenylalkyl) amines for the investigation of structure-activity relationships. Part 1. Mescalin derivatives[J]. Trachsed Helv Chim Acta 2002, 85(9): 3019-3026. [25] WU Y, GUO W B, ZHANG J X, et al. Two self-assembled supramolecular solar cells sensitized via axial coordination with zinc porphyrin[J]. J Coord Chem, 2016, 69(21): 3148-3157. [26] KIRA A, UMEYAMA T, MATANO Y, et al. Upramolecular donor-acceptor heterojunctions by vectorial stepwise assembly of porphyrins and coordination-bonded fullerene arrays for photocurrent generation[J]. J Am Chem Soc, 2009, 131(41): 3198-3200. [27] WU Y, LIU J C, CAO J, et al. Two self-assemblies of Schiff base porphyrins to modify titanium dioxide electrodes for supramolecular solar cells[J]. Res Chem Intermed, 2015, 41(9): 6833-6842. [28] CHANG S, WANG H, HUA Y, et al. Conformational engineering of co-sensitizers to retard back charge transfer for high-efficiency dye-sensitized solar cells[J]. J Mater Chem A, 2013, 1(38): 11553-11558. [29] SONG X, ZHANG W, LI X, et al. Influence of ethynyl position on benzothiadiazole based D-A-π-A dye-sensitized solar cells: spectral response and photovoltage performance[J]. J Mater Chem C, 2016, 4(39): 9203-9211. [30] YANG C, YANG Z, GU H, et al. Facet-selective 2D self-assembly of TiO2 nanoleaves via supramolecular interactions[J]. Chem Mater, 2008, 20(24): 7514-7520. [31] VERMA S, GHOSH H N. Exciton energy and charge transfer in porphyrin aggregate/semiconductor (TiO2) composites[J]. J Phys Chem Lett, 2012, 3(14): 1877-1884. [32] MAITI N C, MAZUMDAR S, PERIASAMY N, et al. H-aggregates of porphyrin-surfactant complexes: time-resolved fluorescence and other spectroscopic studies[J]. J Phys Chem B, 1998, 102(9): 1528-1538. [33] WANG Q, MOSER J E, GRÄTZEL M. Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells[J]. J Phys Chem B, 2005, 109(31): 14945-14953. [34] BAREA E M, GONZALEZ-PEDRO V, RIPOLL S-SANCHIS T, et al. Porphyrin dyes with high injection and low recombination for highly efficient mesoscopic dye-sensitized solar cells[J]. J Phys Chem C, 2011, 115(21): 10898-10902. |