1 |
RAMAN C V. A new radiation[J]. Indian J Phys, 1928, 2: 387-398.
|
2 |
FLEISCHMANN M, HENDRA P J, MCQUILLAN A J. Raman spectra of pyridine adsorbed at a silver electrode[J]. Chem Phys Lett, 1974, 26(2): 163-166.
|
3 |
LANGER J, ABERASTURI D J D, AIZPURUA J, et al. Present and future of surface-enhanced raman scattering[J]. ACS Nano, 2020, 14(1): 28-117.
|
4 |
QIAN Y, FANA T T, YAO Y, et al. Label-free and raman dyes-free surface-enhanced raman spectroscopy for detection of DNA[J]. Sens Actuators B: Chem, 2018, 254: 483-489.
|
5 |
SARKAR U K. A pH-dependent SERS study of thiophene-2-carboxylic acid adsorbed on Ag-sols[J]. Chem Phys Lett, 2003, 374(3): 341-347.
|
6 |
刘爱荣, 陈艳敏, 葛凤燕, 等. 纤维基表面增强拉曼基底的研究进展[J]. 纺织学报, 2020, 41(5): 176-183.
|
|
LIU A R, CHEN Y M, GE F Y, et al. Research progress of fiber-based surface-enhanced raman substrate[J]. J Text Res, 2020, 41(5): 176-183.
|
7 |
PILOT R, SIGNORINI R, DURANTE C, et al. A review on surface-enhanced raman scattering[J]. Biosensors-Basel, 2019, 9(2): 57.
|
8 |
JIANG C Y, MA X Y, XUE M Y, et al. Application of thermoresponsive hydrogel/gold nanorods composites in the detection of diquat[J]. Talanta, 2017, 174: 192-197.
|
9 |
LIN X M, CUI Y, XU Y H. Surface-enhanced raman spectroscopy: substrate-related issues[J]. Anal Bioanal Chem, 2009, 394(7): 1729-1745.
|
10 |
JIANG C Y, WU T, LIU J X, et al. Application of thermo-sensitive imprinted SERS substrate on the rapid trace detection of ofloxacin[J]. Anal Methods, 2020, 12: 4783-4788.
|
11 |
LI S J, ZHANG N N, ZHANG N N. Three-dimensional ordered Ag/ZnO/Si hierarchical nanoflower arrays for spatially uniform and ultrasensitive SERS detection[J]. Sens Actuators B: Chem, 2020, 321: 128529.
|
12 |
REINCKE F, HICKEY S G, KEGEL W K. Spontaneous assembly of a monolayer of charged gold nanocrystals at the water/oil interface[J]. Angew Chem Int Ed, 2004, 43(4): 458-462.
|
13 |
MA Y M, LIU H L, MAO M, et al. Surface-enhanced raman spectroscopy on liquid interfacial nanoparticle arrays for multiplex detecting drugs in urine[J]. Anal Chem, 2016, 88(16): 8145-8151.
|
14 |
WANG K Q, SUN D W, PU H B, et al. Two-dimensional Au@Ag nanodot array for sensing dual-fungicides in fruit juices with surface-enhanced Raman spectroscopy technique[J]. Food Chem, 2020, 310: 125923.
|
15 |
PU H B, HUANG Z B, XU F, et al. Two-dimensional self-assembled Au-Ag core-shell nanorods nanoarray for sensitive detection of thiram in apple using surface-enhanced Raman spectroscopy[J]. Food Chem, 2021, 343: 128548.
|
16 |
YANG N, YOU T T, GAO Y K, et al. Rapid fabrication of flexible and transparent gold nanorods/poly(methyl methacrylate) membrane substrate for SERS nanosensor application[J]. Spectrochim Acta A, 2018, 202: 376-381.
|
17 |
刘宗怀, 乔山峰, 袁佳琦, 等. 层层自组装技术在功能薄膜材料制备中的应用[J]. 陕西师范大学学报(自然科学版), 2010, 38(4): 65-72.
|
|
LIU Z H, QIAO S F, YUAN J Q, et al. Application of layer-by-layer self-assembly technology in the preparation of functional thin film materials[J]. J Shaanxi Norm Univ (Nat Sci Ed), 2010, 38(4): 65-72.
|
18 |
TAO A R, HUANG J X, YANG P D, et al. Langmuir-Blodgettry of nanocrystals and nanowires[J]. Acc Chem Res, 2008, 41(12): 1662-1673.
|
19 |
TAHGHIGHI M, MANNELLI I, JANNER D, et al. Tailoring plasmonic response by Langmuir-Blodgett gold nanoparticle templating for the fabrication of SERS substrates[J]. Appl Surf Sci, 2018, 447: 416-422.
|
20 |
ZHANG Q, GUO W, HE L Y, et al. A new SERS substrate of self-assembled monolayer film of gold nanoparticles on silicon wafer for the rapid detection of polycyclic aromatic hydrocarbons[J]. Mater Chem Phys, 2020, 250: 122994.
|
21 |
LI Y P, LI Y J, DUAN J L, et al. Rapid and ultrasensitive detection of mercury ion(II) by colorimetric and SERS method based on silver nanocrystals[J]. Microchem J, 2020, 161: 105790.
|
22 |
PIENPINIJTHAM P, HAN X X, EKGASIT S, et al. An ionic surfactant-mediated Langmuir-Blodgett method to construct gold nanoparticle films for surface-enhanced raman scattering[J]. Phys Chem Chem Phys, 2012, 14(29): 10132-10139.
|
23 |
CHEN Y, FU J, NG K C, et al. Free-standing polymer-nanoparticle superlattice sheets self-assembled at the air-liquid interface[J]. Cryst Growth Des, 2011, 11(11): 4742-4746.
|
24 |
WANG H, LEVIN C S, HALAS N J. Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced Raman spectroscopy substrates[J]. J Am Chem Soc, 2005, 127(43): 14992-14993.
|
25 |
SU Q Q, MA X Y, DONG J, et al. A reproducible SERS substrate based on electrostatically assisted APTES-functionalized surface-assembly of gold nanostars[J]. ACS Appl Mater Interfaces, 2011,6: 1873-1879.
|
26 |
WEI W B, WANG Y R, JI J J, et al. Fabrication of large-area arrays of vertically aligned gold nanorods[J]. Nano Lett, 2018, 18(7): 4467-4472.
|
27 |
FAN M K, ANDRADE G F S, BROLO A G. A review on the fabrication of substrates for surface enhanced raman spectroscopy and their applications in analytical chemistry[J]. Anal Chim Acta, 2011, 693(1/2): 7-25.
|
28 |
LI W Q, WANG G, ZHANG X N, et al. Geometrical and morphological optimizations of plasmonic nanoarrays for high-performance SERS detection[J].Nanoscale, 2015, 7(37): 15487-15494.
|
29 |
WANG X X, WU Y, WEN X L, et al. Surface plasmons and SERS application of Au nanodisk array and Au thin film composite structure[J]. Opt Quantum Electron, 2020, 52(5): 238.
|
30 |
YUE W S, GONG T C, LONG X Y, et al. Sensitive and reproducible surface-enhanced raman spectroscopy (SERS) with arrays of dimer-nanopillars[J]. Sens Actuators B: Chem, 2020, 322: 128563.
|
31 |
MALYARCHUK V, HUA F, MACK N H, et al. High performance plasmonic crystal sensor formed by soft nanoimprint lithography[J]. Opt Express, 2005, 13(15): 5669-5675.
|
32 |
ALVAREZ-PUEBLA R, CUI B, BRAVO-VASQUEZ J P, et al. Nanoimprinted SERS-active substrates with tunable surface plasmon resonances[J]. J Phys Chem, 2007, 111(18): 6720-6723.
|
33 |
HAMOUDA F, BRYCHE J F, AASSIME A, et al. Soft nanoimprint lithography on SiO2 sol-gel to elaborate sensitive substrates for SERS detection[J]. AIP Adv, 2017, 7(12): 125125.
|
34 |
COTTAT M, LIDGI-GUIGUI N, TIJUNELYTE I, et al. Soft UV nanoimprint lithography-designed highly sensitive substrates for SERS detection[J]. Nanoscale Res Lett, 2016, 9: 623.
|
35 |
XU S P, LEI Y. Template-assisted fabrication of nanostructured arrays for sensing applications[J]. ChemPlusChem, 2018, 83(8): 741-755.
|
36 |
TEBBE M, CHEREPANOV P, SKORB E V, et al. SERS platforms of plasmonic hydrophobic surfaces for analyte concentration: hierarchically assembled gold nanorods on anodized aluminum[J]. Part Part Syst Charact, 2014, 31(11): 1134-1140.
|
37 |
刘坤, 高帅波, 孟凡兴, 等. 阳极氧化法制备多孔氧化铝研究进展[J]. 铁合金, 2019, 50(4): 21-25.
|
|
LIU K, GAO S B, MENG F X, et al. Research progress in preparation of porous alumina by anodic oxidation[J]. Ferroalloy, 2019, 50(4): 21-25.
|
38 |
常胜男. 多孔阳极氧化铝模板在纳米材料方面的制备及应用[J]. 西部皮革, 2018, 40(22): 2.
|
|
CHANG S N. Preparation and application of porous anodized alumina template in nanomaterials[J]. West Leather, 2018, 40(22): 2.
|
39 |
CHEN B S, MENG G W, ZHOU F, et al. Ordered arrays of Au-nanobowls loaded with Ag-nanoparticles as effective SERS substrates for rapid detection of PCBs[J]. Nanotechnology, 2014, 25(14): 145605.
|
40 |
WANG B, WU L, LU Z C, et al. Gecko-inspired nanotentacle surface-enhanced Raman spectroscopy substrate for sampling and reliable detection of pesticide residues in fruits and vegetables[J]. Anal Chem, 2017, 89(4): 2424-2431.
|
41 |
MUHAMMAD M, YAN B, YAO G H, et al. Surface-enhanced raman spectroscopy for trace detection of tetracycline and dicyandiamide in milk using transparent substrate of Ag nanoparticle arrays[J]. ACS Appl Nano Mater, 2020, 3(7): 7066-7075.
|
42 |
ZHU T, WANG H, ZANG L B, et al. Flexible and reusable Ag coated TiO2 nanotube arrays for highly sensitive SERS detection of formaldehyde[J]. Molecules, 2020, 25(5): 1199.
|
43 |
YANG S K, LEI Y. Recent progress on surface pattern fabrications based on monolayer colloidal crystal templates and related applications[J]. Nanoscale, 2011, 3(7): 2768-2782.
|
44 |
HAYNES C V, VAN DUYNE R P. Plasmon-sampled surface-enhanced raman excitation spectroscopy[J]. J Phys Chem B, 2003, 107(30): 7426-7433.
|
45 |
傅强, 汪大海. 旋涂法制备单层和多层密排聚苯乙烯微球模板及其SERS性能[J]. 武汉大学学报(理学版), 2017, 63(6): 483-487.
|
|
FU Q, WANG D H. Preparation and SERS properties of single-layer and multi-layer closely packed polystyrene microsphere templates by spin coating[J]. J Wuhan Univ (Nat Sci Ed), 2017, 63(6): 483-487.
|
46 |
YANG S K, LAPSLEY M L, CAO B Q, et al. Large-scale fabrication of three-dimensional surface patterns using template-defined electrochemical deposition[J]. Adv Funct Mater, 2013, 23(6): 720-730.
|
47 |
CHEN J F, LI T, ZHANG J. Raman enhancement properties of a high uniformity PS microsphere-Ag nanoparticle substrate[J]. Opt Mater Express, 2020, 10(12): 3215-3225.
|
48 |
ZHAO Q, LIU G Q, ZHANG H W, et al. Ordered gold-coated glass nano-sting array with large density tips as highly SERS-active chips for detection of trace organophosphorous toxicant[J]. Nanotechnology, 2020, 31(41): 415301.
|
49 |
TANG J Q, ZENG C Y, WANG Y Q, et al. Langmuir-Blodgett film of esterifiable silica nanoparticles as substrates for surface-enhanced Raman scattering[J]. Plasmonics, 2015, 10(3): 563-568.
|
50 |
ZHAO W D, ZHANG Y X, YANG J J, et al. Synergistic plasmon resonance coupling and light capture in ordered nanoarrays as ultrasensitive and reproducible SERS substrates[J]. Nanoscale, 2020, 12(35): 18056-18066.
|
51 |
HUO D X, CHEN B, LI M T, et al. Template-assisted fabrication of Ag-nanoparticles@ZnO-nanorods array as recyclable 3D surface enhanced Raman scattering substrate for rapid detection of trace pesticides[J]. Nanotechnology, 2021, 32(14): 145302.
|
52 |
张 瑛, 刘之景. 制备纳米多孔材料的模板自组装技术[J]. 微纳电子技术, 2004(10): 24-28.
|
|
ZHANG Y, LIU Z J. Template self-assembly technology for preparing nano-porous materials[J]. Micronanoelectron Technol, 2004(10): 24-28.
|
53 |
CHENG J Y, ROSS C A, SMITH H I, et al. Templated self-assembly of block copolymers: top-down helps bottom-up[J]. Adv Mater, 2006, 18(19): 2505-2521.
|
54 |
YIN Z Y, ZHOU Y C, CUI P C, et al. Fabrication of ordered bi-metallic array with superstructure of gold micro-rings via templated-self-assembly procedure and its SERS application[J]. Chem Commun, 2020, 56(35): 4808-4811.
|