应用化学 ›› 2024, Vol. 41 ›› Issue (9): 1248-1258.DOI: 10.19894/j.issn.1000-0518.240080
• 综合评述 • 上一篇
收稿日期:
2024-03-20
接受日期:
2024-07-22
出版日期:
2024-09-01
发布日期:
2024-10-09
通讯作者:
刘汉邦
基金资助:
Han-Bang LIU(), Wen-Yue HAO, Jun-Hui GUO, Chang LIU, Feng-Lai WANG, Shao-Zhong PENG
Received:
2024-03-20
Accepted:
2024-07-22
Published:
2024-09-01
Online:
2024-10-09
Contact:
Han-Bang LIU
About author:
liuhanbang.fshy@sinopec.comSupported by:
摘要:
LTA(Linde type A)结构类型的分子筛是早期通过人工合成得到的沸石分子筛之一。 目前,工业化的LTA型分子筛即A型分子筛的硅铝比较低,尽管它在吸附和分离等过程中被大量应用,但较差的酸催化活性和水热稳定性限制了其进一步的应用。 高硅LTA型分子筛具有比低硅的A型分子筛更好的热/水热稳定性,且在吸附分离以及催化等领域具有独特的应用潜力。 本文综述并讨论了自1966年以来高硅LTA型分子筛的合成体系,重点集中在近70年来的发展,包括无机体系和有机体系,针对不同的合成体系以及硅铝比,阐述了其合成机理并对合成方法的优缺点进行了评价。 讨论了高硅LTA型分子筛在吸附分离以及催化领域的应用与研究进展,对未来LTA型分子筛的发展与应用进行了展望,并指出深入掌握晶化机理,开发简单的合成体系,廉价的结构导向剂将是高硅LTA型分子筛研究的重点。
中图分类号:
刘汉邦, 郝文月, 郭俊辉, 刘昶, 王凤来, 彭绍忠. 高硅LTA型分子筛的合成及应用研究进展[J]. 应用化学, 2024, 41(9): 1248-1258.
Han-Bang LIU, Wen-Yue HAO, Jun-Hui GUO, Chang LIU, Feng-Lai WANG, Shao-Zhong PENG. Advances in Synthesis and Application of High-Silica LTA Zeolite[J]. Chinese Journal of Applied Chemistry, 2024, 41(9): 1248-1258.
图3 高硅LTA型分子筛在TEA+/TMA+/Na+体系下的形成路径示意图[27]
Fig.3 Schematic illustration of the high-silica LTA zeolite formation pathway in the TEA+/TMA+/Na+ system[27]
图4 用于合成ITQ-29的OSDA: 甲基化喹啉衍生物(左)和冠醚Kryptofix 222(右)[18]
Fig.4 OSDA for synthesizing ITQ-29: methylated julolidine (left) and crown ether Kryptofix 222 (right)[18]
图5 OSDA在高硅LTA型分子筛中的位置: 2个12DM3(4MB)I在LTA型分子筛α笼中,1个TMA+在β笼中[31]
Fig.5 The position of OSDA in high silica LTA: two 12DM3(4MB)I fit in α-cage of LTA, 1 TMA+ fits in β-cage of LTA [31]
图6 (A) CO2和(B) N2在K+占比为0% (■)、10% (●)、18% (▲)和26 %(▼)的NaK-ZK-4上的吸附等温线(273 K)[33]; (C)不同硅铝比LTA型分子筛在CO2/CH4穿透实验中的可再生性能; (D)硅铝比为5(实线)和1(虚线)的LTA型分子筛的CO2解吸曲线[34]
Fig.6 CO2 (A) and N2 (B) adsorption isotherms of NaK-ZK-4 with different K+ contents at 273 K: 0% (■), 10% (●), 18% (▲) and 26% (▼)[33]; (C) Regenerability of LTA zeolites with different Si/Al ratios in CO2/CH4 breakthrough experiments; (D) CO2 desorption curves of LTA zeolites: Si/Al ratio of 5 (solid line), Si/Al ratio of 1 (dash line)[34]
Sample | n(Si)/n(Al) | n(Na)/n(Al) | N2 uptake/(mmol·g-1) (100 kPa, 25 ℃) | O2 uptake/(mmol·g-1) (100 kPa, 25 ℃) | O2/N2 selecivity(V(O2)∶V(N2)=21∶79, 25 ℃) |
---|---|---|---|---|---|
NaA | 1.05 | 0.95 | 0.372 | 0.132 | 0.33 |
NaA-H | 1.06 | 0.54 | 0.262 | 0.138 | 0.50 |
ZK-4 | 2.20 | 0.71 | 0.290 | 0.218 | 0.71 |
ZK-4-H | 2.15 | 0.07 | 0.174 | 0.203 | 1.17 |
NaUZM-9 | 2.94 | 0.57 | 0.238 | 0.213 | 0.85 |
NaUZM-9-H | 2.81 | 0.08 | 0.155 | 0.202 | 1.32 |
表1 不同硅铝摩尔比的LTA以及氢型LTA型分子筛的氮氧吸附量及选择性[36]
Table 1 N2 and O2 uptakes and selectivity of LTA and H-LTA with different Si/Al molar ratios[36]
Sample | n(Si)/n(Al) | n(Na)/n(Al) | N2 uptake/(mmol·g-1) (100 kPa, 25 ℃) | O2 uptake/(mmol·g-1) (100 kPa, 25 ℃) | O2/N2 selecivity(V(O2)∶V(N2)=21∶79, 25 ℃) |
---|---|---|---|---|---|
NaA | 1.05 | 0.95 | 0.372 | 0.132 | 0.33 |
NaA-H | 1.06 | 0.54 | 0.262 | 0.138 | 0.50 |
ZK-4 | 2.20 | 0.71 | 0.290 | 0.218 | 0.71 |
ZK-4-H | 2.15 | 0.07 | 0.174 | 0.203 | 1.17 |
NaUZM-9 | 2.94 | 0.57 | 0.238 | 0.213 | 0.85 |
NaUZM-9-H | 2.81 | 0.08 | 0.155 | 0.202 | 1.32 |
图7 (A) LTA型分子筛中3种可能的酸性位点: H-O1, H-O2, H-O3; (B)实验得到的INS谱与DFT理论计算得到的3种酸性位点的结果对比[41]
Fig.7 (A) Three possible acid sites of LTA zeolite: H-O1, H-O2, H-O3; (B) Comparison between experimental INS spectra and periodic DFT results for H-O1, H-O2 and H-O3[41]
图8 (A)未老化、(B)923 K、(C)1023 K以及(D)1123 K下老化的不同分子筛催化剂在NH3-SCR反应中的NO转化率: Cu-LTA (■)、Cu-SSZ-13 (●)、Cu-ZSM-5 (▲)和Cu-PST-7 (▼)[32]
Fig.8 No conversion in NH3-SCR reaction over (A) fresh, (B) 923 K, (C) 1023 K and (D) 1123 K aged zeolite catalysts: Cu-LTA (■), Cu-SSZ-13 (●), Cu-ZSM-5 (▲) and Cu-PST-7 (▼)[32]
1 | 徐如人, 庞文琴, 霍启升, 等. 分子筛与多孔材料化学[M]. 北京: 科学出版社, 2015. |
XU R R, PANG W Q, HUO Q S, et al. Molecular sieves and porous materials chemistry[M]. Beijing: Science Press, 2015. | |
2 | CHEN G, LI J, WANG S, et al. Construction of single-crystalline hierarchical ZSM-5 with open nanoarchitectures via anisotropic-kinetics transformation for the methanol-to-hydrocarbons reaction[J]. Angew Chem Int Ed, 2022, 134(18): e202200677. |
3 | CHEN G, HAN J, NIU Z, et al. Regioselective surface assembly of mesoporous carbon on zeolites creating anisotropic wettability for biphasic interface catalysis[J]. J Am Chem Soc, 2023, 145(16): 9021-9028. |
4 | DUSSELIER M, DAVIS M E. Small-pore zeolites: synthesis and catalysis[J]. Chem Rev, 2018, 118(11): 5265-5329. |
5 | BRECK D W, EVERSOLE W G, MILTON R M, et al. Crystalline zeolites. Ⅰ. the properties of a new synthetic zeolite, type A[J]. J Am Chem Soc, 1956, 78(23): 5963-5972. |
6 | SEFF K. Structural chemistry inside zeolite A[J]. Acc Chem Res, 1976, 9(4): 121-128. |
7 | UZUNOVA E L, ST NIKOLOV G. DFT study of zeolite LTA structural fragments: double four-member rings of oxygen-bridged silicon and aluminum atoms[J]. J Phys Chem A, 2000, 104(22): 5302-5306. |
8 | 徐啟斌, 牛香力, 陈婷婷, 等. 煤气化渣合成4A分子筛及其吸附性能研究[J]. 硅酸盐通报, 2023, 42(6): 2251-2261. |
XU Q B, NIU X L, CHEN T T, et al. Preparation of 4A molecular sieve from coal gasification slag and its adsorption performance[J]. Bull Chin Ceram Soc, 2023, 42(6): 2251-2261. | |
9 | GRANDE C A, RODRIGUES A E. Propane/propylene separation by pressure swing adsorption using zeolite 4A[J]. Ind Eng Chem Res, 2005, 44(23): 8815-8829. |
10 | 孙剑平, 张睿, 王奥乾, 等. 硝酸钠改性5A分子筛对废水中Cr3+吸附效果的影响[J]. 沈阳建筑大学学报(自然科学版), 2023, 39(2): 377-384. |
SUN J P, ZHANG R, WANG A Q, et al. Preparation of calcined 5A zeolite modified with sodium nitrate and its adsorption for Cr3+[J]. J Shenyang Archit Univ (Nat Sci Ed), 2023, 39(2): 377-384. | |
11 | 王洪亮, 张震, 张勇平, 等. 4A分子筛吸脱水特性研究[J]. 矿产综合利用, 2023(3): 161-164, 180. |
WANG H L, ZHANG Z, ZHANG Y P, et al. Characteristic study on water absorption and dehydration of 4A molecular sieve[J]. Multipurp Util Miner Resour, 2023(3): 161-164, 180. | |
12 | TOWNSEND R P. Ion exchange in zeolites: some recent developments in theory and practice[J]. Stud Surf Sci Catal, 1986, 28: 273-282. |
13 | CORMA A, DAVIS M E. Issues in the synthesis of crystalline molecular sieves: towards the crystallization of low framework-density structures[J]. ChemPhysChem, 2004, 5(3): 304-313. |
14 | WEITKAMP J. Zeolites and catalysis[J]. Solid State Ionics, 2000, 131(1/2): 175-188. |
15 | KERR G T. Chemistry of crystalline aluminosilicates.Ⅱ. the synthesis and properties of zeolite ZK-4[J]. Inorg Chem, 1966, 5(9): 1537-1539. |
16 | LEWIS G J, MILLER M A, MOSCOSO J G, et al. Experimental charge density matching approach to zeolite synthesis[J]. Studies Surf Sci Catal, 2004, 154(4): 364-372. |
17 | CORMA A, REY F, RIUS J, et al. Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites[J]. Nature, 2004, 431(7006): 287-290. |
18 | BOAL B W, SCHMIDT J E, DEIMUND M A, et al. Facile synthesis and catalysis of pure-silica and heteroatom LTA[J]. Chem Mater, 2015, 27(22): 7774-7779. |
19 | ITANI L, LIU Y, ZHANG W, et al. Investigation of the physicochemical changes preceding zeolite nucleation in a sodium-rich aluminosilicate gel[J]. J Am Chem Soc, 2009, 131(29): 10127-10139. |
20 | OLEKSIAK M D, RIMER J D. Synthesis of zeolites in the absence of organic structure-directing agents: factors governing crystal selection and polymorphism[J]. Rev Chem Eng, 2014, 30(1): 1-49. |
21 | NAVROTSKY A, TROFYMLUK O, LEVCHENKO A A. Thermochemistry of microporous and mesoporous materials[J]. Chem Rev, 2009, 109(9): 3885-3902. |
22 | CONATO M T, OLEKSIAK M D, MCGRAIL B P, et al. Framework stabilization of Si-rich LTA zeolite prepared in organic-free media[J]. Chem Commun, 2015, 51(2): 269-272. |
23 | KUEHL G H. Preparation of shape selective zeolite alpha as catalyst: US Pat. 4191663[P]. 1980-03-04. |
24 | KODAIRA T, IKEDA T. Characters of the tetramethylammonium ion in ZK-4 zeolites depending on their Si/Al ratios[J]. J Phys Chem C, 2010, 114(30): 12885-12895. |
25 | FAN W, SHIRATO S, GAO F, et al. Phase selection of FAU and LTA zeolites by controlling synthesis parameters[J]. Micropor Mesopor Mat, 2006, 89(1/3): 227-234. |
26 | KIM S H, PARK M B, MIN H K, et al. Zeolite synthesis in the tetraethylammonium-tetramethylammonium mixed-organic additive system[J]. Micropor Mesopor Mat, 2009, 123(1/2/3): 160-168. |
27 | PARK M B, LEE Y, ZHENG A, et al. Formation pathway for LTA zeolite crystals synthesized via a charge density mismatch approach[J]. J Am Chem Soc, 2013, 135(6): 2248-2255. |
28 | BOUIZI Y, PAILLAUD J L, SIMON L, et al. Seeded synthesis of very high silica zeolite A[J]. Chem Mater, 2007, 19(4): 652-654. |
29 | HUANG A, WEIDENTHALER C, CARO J. Facile and reproducible synthesis of ITQ-29 zeolite by using Kryptofix 222 as the structure directing agent[J]. Micropor Mesopor Mater, 2010, 130(1/1/3): 352-356. |
30 | HARBUZARU B, PAILLAUD J L, PATARIN J, et al. IM-11 crystalline solid with structure type LTA, and a process for its preparation: US Pat. 7056490[P]. 2006-06-06. |
31 | BORES C, LUO S, LONERGAN J D, et al. Monte carlo simulations and experiments of all-silica zeolite LTA assembly combining structure directing agents that match cage sizes[J]. PhysChemChemPhys, 2022, 24(1): 142-148. |
32 | JO D, RYU T, PARK G T, et al. Synthesis of high-silica LTA and UFI zeolites and NH3-SCR performance of their copper-exchanged form[J]. ACS Catal, 2016, 6(4): 2443-2447. |
33 | CHEUNG O, BACSIK Z, KROKIDAS P, et al. K+ exchanged zeolite ZK-4 as a highly selective sorbent for CO2[J]. Langmuir, 2014, 30(32): 9682-9690. |
34 | PALOMINO M, CORMA A, REY F, et al. New insights on CO2-methane separation using LTA zeolites with different Si/Al ratios and a first comparison with MOFs[J]. Langmuir, 2010, 26(3): 1910-1917. |
35 | 刘伟强, 王红超, 杨彦强, 等. 烯烃对5A分子筛吸附剂吸附分离性能的影响[J]. 石油炼制与化工, 2023, 54(11): 34-40. |
LIU W Q, WANG H C, YANG Y Q, et al. Effect of olefins on adsorption and separation performance of 5A zeolite adsorbent[J]. Pet Process Petrochem, 2023, 54(11): 34-40. | |
36 | LIU H, YUAN D, LIU G, et al. Oxygen-selective adsorption on high-silica LTA zeolite[J]. Chem Commun, 2020, 56(75): 11130-11133. |
37 | LIU B, KITA H, YOGO K. Preparation of Si-rich LTA zeolite membrane using organic template-free solution for methanol dehydration[J]. Sep Purif Techol, 2020, 239: 116533. |
38 | TISCORMIA I, VALENCIA S, CORMA A, et al. Preparation of ITQ-29 (Al-free zeolite A) membranes[J]. Micropor Mesopor Mat, 2008, 110(2/3): 303-309. |
39 | CASADO-COTERILLO C, SOTO J, JIMARE M T, et al. Preparation and characterization of ITQ-29/polysulfone mixed-matrix membranes for gas separation: effect of zeolite composition and crystal size[J]. Chem Eng Sci, 2012, 73: 116-122. |
40 | KUEHL G H. Shape selective catalyst from zeolite alpha and use thereof. US Pat. 4299686[P]. 1981-11-10. |
41 | LEMISHKO T, VALENCIA S, REY F, et al. Inelastic neutron scattering study on the location of Brønsted acid sites in high silica LTA zeolite[J]. J Phys Chem C, 2016, 120(43): 24904-24909. |
42 | XU H, LU P, FU G, et al. The strong SDA/framework interactions and acidity study of high-silica LTA-type zeolites[J]. Micropor Mesopor Mat, 2023, 360: 112724. |
43 | WANG A, ARORA P, BERNIN D, et al. Investigation of the robust hydrothermal stability of Cu/LTA for NH3-SCR reaction[J]. Appl Catal B-Environ Energy, 2019, 246: 242-253. |
44 | RYU T, AHN N H, SEO S, et al. Fully copper-exchanged high-silica LTA zeolites as unrivaled hydrothermally stable NH3-SCR catalysts[J]. Angew Chem Int Ed, 2017, 129(12): 3304-3308. |
45 | RYU T, KIM H, HONG S B. Nature of active sites in Cu-LTA NH3-SCR catalysts: a comparative study with Cu-SSZ-13[J]. Appl Catal B-Environ Energy, 2019, 245: 513-521. |
[1] | 贾贞健, 韩曦, 张杰. 铋改性TiO2光催化剂的制备及其光催化性能[J]. 应用化学, 2024, 41(8): 1116-1125. |
[2] | 徐海祥, 夏举佩. 改性聚乙烯醇协同硅酸盐水泥制高强防水石膏[J]. 应用化学, 2024, 41(8): 1131-1145. |
[3] | 吕东昊, 徐兰兰, 刘孝娟. 窄带隙 β-CuFeO2铁电光催化剂性质及表面析氧反应特性[J]. 应用化学, 2024, 41(7): 1010-1023. |
[4] | 赛徐煦, 胡晓丽, 孙利民, 刘洪基, 陈洲, 方维平, 伊晓东. Zn改性Ni/Al2O3催化剂的苯乙炔选择加氢性能[J]. 应用化学, 2024, 41(7): 948-958. |
[5] | 李英维, 韩吉, 关卜源. 二维介孔材料的合成方法、设计与应用研究进展[J]. 应用化学, 2024, 41(6): 767-782. |
[6] | 陆志艳, 陈雯轩, 孙汪师诒, 卓宁泽, 魏潇, 廖丽芳, 许庆利, 吴诗勇. Ce-Mn/ZrO2复合催化剂的制备及其固硫性能[J]. 应用化学, 2024, 41(6): 839-850. |
[7] | 张守村, 闫雪垠, 宋阳华, 李卓敏. CO2刺激响应球型水凝胶的制备及在蛋白质分离中的应用[J]. 应用化学, 2024, 41(6): 870-877. |
[8] | 万冰洁, 刘小雪, 齐林光, 贾长超, 刘健. TiO2基光催化CO2还原研究进展[J]. 应用化学, 2024, 41(5): 637-658. |
[9] | 周正, 夏艺玮, 金杰, 郑松祺, 周思宇, 赵桂艳. 超韧聚乳酸/乙烯丙烯酸丁酯甲基丙烯酸缩水甘油酯共混物的制备与性能[J]. 应用化学, 2024, 41(4): 529-537. |
[10] | 王眉花, 冯禹, 王运坤, 赵旭东, 杨雯, 董川. 原子层沉积法制备限域型Pt基催化剂及其苯酚催化性能[J]. 应用化学, 2024, 41(4): 547-556. |
[11] | 彭秀英, 高小艳, 王松柏, 刘福. 掺杂型三维多孔纳米镍催化偶氮染料脱色性能[J]. 应用化学, 2024, 41(4): 557-567. |
[12] | 商宗玲, 张弨, 赵凤玉. 稀土修饰对Cu/Al2O3催化乙酰丙酸乙酯加氢性能的影响[J]. 应用化学, 2024, 41(3): 340-348. |
[13] | 王静, 李喜兰, 郭秀芬. 五氧化二铌光催化剂的制备及其光催化性能[J]. 应用化学, 2024, 41(3): 415-421. |
[14] | 孙天礼, 朱国, 何海, 黄炳坤, 熊兆锟, 赖波. 单原子催化剂在类芬顿水处理领域的研究进展[J]. 应用化学, 2024, 41(2): 217-229. |
[15] | 周学敏, 吕姝臻, 张国芳, 崔竹梅, 毕赛. 基于上转换信标探针构建信号放大近红外激发荧光生物传感器用于microRNA检测[J]. 应用化学, 2024, 41(1): 137-146. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||