应用化学 ›› 2024, Vol. 41 ›› Issue (8): 1131-1145.DOI: 10.19894/j.issn.1000-0518.230217
收稿日期:
2023-07-30
接受日期:
2024-06-17
出版日期:
2024-08-01
发布日期:
2024-08-27
通讯作者:
夏举佩
Hai-Xiang XU1,2,3, Ju-Pei XIA2()
Received:
2023-07-30
Accepted:
2024-06-17
Published:
2024-08-01
Online:
2024-08-27
Contact:
Ju-Pei XIA
About author:
xjp6661@163.com摘要:
以脱硫石膏为基料,以液碱活化聚甲基氢硅氧烷(PMHS)催化改性聚乙烯醇(PVA)防水剂协同硅酸盐水泥研发高强防水石膏。 探究了改性PVA防水剂、硅酸盐水泥对脱硫石膏标准试块表面吸水率、力学性能和软化系数的影响; 通过红外光谱确定改性疏水剂、硅酸盐水泥单独及协同研发强防水石膏的连接形式; 通过热重仪分析不同掺加剂对石膏热稳定性的影响; 研究表明,改性PVA防水剂协同硅酸盐水泥制高强防水石膏的最佳配比为: 防水剂120 g、硅酸盐水泥150 g,此时表面吸水率9.35%,绝干抗压强度22.54 MPa、软化系数67.57%,同时有效提高了纸面石膏板的热稳定性。
中图分类号:
徐海祥, 夏举佩. 改性聚乙烯醇协同硅酸盐水泥制高强防水石膏[J]. 应用化学, 2024, 41(8): 1131-1145.
Hai-Xiang XU, Ju-Pei XIA. Preparation of High Strength Waterproof Gypsum by Modified Polyvinyl Alcohol and Portland Cement[J]. Chinese Journal of Applied Chemistry, 2024, 41(8): 1131-1145.
Entry | m(liquid alkali activated PMHS)∶m(PVA) | m(NBDL)/g |
---|---|---|
1 | 1∶2 | 2.4 |
2 | 1∶1.5 | 2.4 |
3 | 1∶1 | 2.4 |
4 | 1.5∶1 | 2.4 |
5 | 2∶1 | 2.4 |
表1 液碱活化PMHS与PVA改性制防水剂的实验设计
Table 1 Experimental design of PMHS and PVA modified by liquid alkali to prepare waterproof agent
Entry | m(liquid alkali activated PMHS)∶m(PVA) | m(NBDL)/g |
---|---|---|
1 | 1∶2 | 2.4 |
2 | 1∶1.5 | 2.4 |
3 | 1∶1 | 2.4 |
4 | 1.5∶1 | 2.4 |
5 | 2∶1 | 2.4 |
Entry | m(desulfurized gypsum)/g | m(waterproofing agent)/g | m(deionized water)/g |
---|---|---|---|
1 | 1 000 | 0 | 600 |
2 | 1 000 | 10 | 600 |
3 | 1 000 | 20 | 600 |
4 | 1 000 | 40 | 600 |
5 | 1 000 | 60 | 600 |
6 | 1 000 | 80 | 600 |
7 | 1 000 | 100 | 600 |
8 | 1 000 | 120 | 600 |
9 | 1 000 | 150 | 600 |
表2 脱硫石膏外掺防水剂制防水石膏的实验设计
Table 2 Experimental design of desulfurized gypsum mixed with waterproofing agent to make waterproof gypsum
Entry | m(desulfurized gypsum)/g | m(waterproofing agent)/g | m(deionized water)/g |
---|---|---|---|
1 | 1 000 | 0 | 600 |
2 | 1 000 | 10 | 600 |
3 | 1 000 | 20 | 600 |
4 | 1 000 | 40 | 600 |
5 | 1 000 | 60 | 600 |
6 | 1 000 | 80 | 600 |
7 | 1 000 | 100 | 600 |
8 | 1 000 | 120 | 600 |
9 | 1 000 | 150 | 600 |
Entry | m(desulfurized gypsum)/g | m(deionized water)/g | m(modified waterproofing agent)/g | m(portland cement)/g |
---|---|---|---|---|
1 | 1 000 | 600 | 100 | 100 |
2 | 1 000 | 600 | 100 | 150 |
3 | 1 000 | 600 | 100 | 200 |
4 | 1 000 | 600 | 120 | 100 |
5 | 1 000 | 600 | 120 | 150 |
6 | 1 000 | 600 | 120 | 200 |
7 | 1 000 | 600 | 140 | 100 |
8 | 1 000 | 600 | 140 | 150 |
9 | 1 000 | 600 | 140 | 200 |
表3 复配防水剂制高强防水石膏实验设计
Table 3 Experimental design of preparation of high strength waterproof gypsum with compound waterproofing agent
Entry | m(desulfurized gypsum)/g | m(deionized water)/g | m(modified waterproofing agent)/g | m(portland cement)/g |
---|---|---|---|---|
1 | 1 000 | 600 | 100 | 100 |
2 | 1 000 | 600 | 100 | 150 |
3 | 1 000 | 600 | 100 | 200 |
4 | 1 000 | 600 | 120 | 100 |
5 | 1 000 | 600 | 120 | 150 |
6 | 1 000 | 600 | 120 | 200 |
7 | 1 000 | 600 | 140 | 100 |
8 | 1 000 | 600 | 140 | 150 |
9 | 1 000 | 600 | 140 | 200 |
Entry | m(desulfurized gypsum)/g | m(deionized water)/g | m(mixed waterproofing agent)/g | m(portland cement)/g |
---|---|---|---|---|
1 | 1 000 | 600 | 100 | 100 |
2 | 1 000 | 600 | 100 | 150 |
3 | 1 000 | 600 | 100 | 200 |
4 | 1 000 | 600 | 120 | 100 |
5 | 1 000 | 600 | 120 | 150 |
6 | 1 000 | 600 | 120 | 200 |
7 | 1 000 | 600 | 140 | 100 |
8 | 1 000 | 600 | 140 | 150 |
9 | 1 000 | 600 | 140 | 200 |
表4 混合防水剂协同硅酸盐水泥制备高强防水石膏实验设计
Table 4 Experimental design of preparation of high strength waterproof gypsum by modified waterproofing agent and portland cement
Entry | m(desulfurized gypsum)/g | m(deionized water)/g | m(mixed waterproofing agent)/g | m(portland cement)/g |
---|---|---|---|---|
1 | 1 000 | 600 | 100 | 100 |
2 | 1 000 | 600 | 100 | 150 |
3 | 1 000 | 600 | 100 | 200 |
4 | 1 000 | 600 | 120 | 100 |
5 | 1 000 | 600 | 120 | 150 |
6 | 1 000 | 600 | 120 | 200 |
7 | 1 000 | 600 | 140 | 100 |
8 | 1 000 | 600 | 140 | 150 |
9 | 1 000 | 600 | 140 | 200 |
图1 单掺防水剂对石膏试块性能的影响A.The influence of single waterproofing agent on the surface water absorption of gypsum test block; B.The influence of single waterproofing agent on the softening coefficient of gypsum test block; C.The influence of single waterproofing agent on the compressive strength of gypsum test block
Fig.1 Effect of single waterproofing agent on properties of gypsum test block
Entry | m(modified waterproofing agent)/g | m(portland cement)/g | Surface water absorption/% | Absolute dry compressive strength/MPa | Soak 2 h compressive strength/MPa | Softening coefficient/% |
---|---|---|---|---|---|---|
1 | 100 | 100 | 15.63 | 18.87 | 12.35 | 65.45 |
2 | 100 | 150 | 14.24 | 19.32 | 12.67 | 65.58 |
3 | 100 | 200 | 14.22 | 19.65 | 12.93 | 65.80 |
4 | 120 | 100 | 11.58 | 21.17 | 14.03 | 66.27 |
5 | 120 | 150 | 9.35 | 22.54 | 15.23 | 67.57 |
6 | 120 | 200 | 10.03 | 22.39 | 14.67 | 65.52 |
7 | 140 | 100 | 13.58 | 20.98 | 13.88 | 66.16 |
8 | 140 | 150 | 12.85 | 21.07 | 14.01 | 66.49 |
9 | 140 | 200 | 12.91 | 21.16 | 13.74 | 63.94 |
表5 改性防水剂复配正交实验结果分析
Table 5 Analysis of the results of orthogonal experiment of modified waterproofing agent
Entry | m(modified waterproofing agent)/g | m(portland cement)/g | Surface water absorption/% | Absolute dry compressive strength/MPa | Soak 2 h compressive strength/MPa | Softening coefficient/% |
---|---|---|---|---|---|---|
1 | 100 | 100 | 15.63 | 18.87 | 12.35 | 65.45 |
2 | 100 | 150 | 14.24 | 19.32 | 12.67 | 65.58 |
3 | 100 | 200 | 14.22 | 19.65 | 12.93 | 65.80 |
4 | 120 | 100 | 11.58 | 21.17 | 14.03 | 66.27 |
5 | 120 | 150 | 9.35 | 22.54 | 15.23 | 67.57 |
6 | 120 | 200 | 10.03 | 22.39 | 14.67 | 65.52 |
7 | 140 | 100 | 13.58 | 20.98 | 13.88 | 66.16 |
8 | 140 | 150 | 12.85 | 21.07 | 14.01 | 66.49 |
9 | 140 | 200 | 12.91 | 21.16 | 13.74 | 63.94 |
Entry | m(mixed waterproofing agent)/g | m(portland cement)/g | Surface water absorption/% | Absolute dry compressive strength/MPa | Soak 2 h compressive strength/MPa | Softening coefficient/% |
---|---|---|---|---|---|---|
100 | 100 | 5.29 | 3.89 | 2.35 | 60.41 | |
2 | 100 | 150 | 5.73 | 4.42 | 2.67 | 60.40 |
3 | 100 | 200 | 6.34 | 5.23 | 2.93 | 56.00 |
4 | 120 | 100 | 3.48 | 2.73 | 2.03 | 74.36 |
5 | 120 | 150 | 4.19 | 3.15 | 2.53 | 80.32 |
6 | 120 | 200 | 4.81 | 4.39 | 3.67 | 83.59 |
7 | 140 | 100 | 2.56 | 2.07 | 1.88 | 90.82 |
8 | 140 | 150 | 2.94 | 3.16 | 2.01 | 63.61 |
9 | 140 | 200 | 3.68 | 3.89 | 2.74 | 70.44 |
表6 混合防水剂复配正交实验结果分析
Table 6 Analysis of orthogonal experiment results of mixed water repellent
Entry | m(mixed waterproofing agent)/g | m(portland cement)/g | Surface water absorption/% | Absolute dry compressive strength/MPa | Soak 2 h compressive strength/MPa | Softening coefficient/% |
---|---|---|---|---|---|---|
100 | 100 | 5.29 | 3.89 | 2.35 | 60.41 | |
2 | 100 | 150 | 5.73 | 4.42 | 2.67 | 60.40 |
3 | 100 | 200 | 6.34 | 5.23 | 2.93 | 56.00 |
4 | 120 | 100 | 3.48 | 2.73 | 2.03 | 74.36 |
5 | 120 | 150 | 4.19 | 3.15 | 2.53 | 80.32 |
6 | 120 | 200 | 4.81 | 4.39 | 3.67 | 83.59 |
7 | 140 | 100 | 2.56 | 2.07 | 1.88 | 90.82 |
8 | 140 | 150 | 2.94 | 3.16 | 2.01 | 63.61 |
9 | 140 | 200 | 3.68 | 3.89 | 2.74 | 70.44 |
图7 外掺改性剂后石膏试块的SEM图A.Blank sample; B.Liquid alkali activated PMHS+PVA modified waterproofing agent; C.Portland cement waterproof agent; D.Liquid alkali activates PMHS+PVA compound portland cement waterproofing agent(A-1, B-1, C-1 and D-1 are the plane scans of Fig.A-D, respectively)
Fig.7 SEM image of gypsum test block after adding modifier
图8 外掺改性剂后石膏试块的FT-IR图a.Blank sample; b.Liquid alkali activated PMHS+PVA modified waterproofing agent; c.Portland cement waterproof agent; d.Liquid alkali activates PMHS+PVA compound portland cement waterproofing agent
Fig.8 FT-IR diagram of gypsum test block after adding modifier
1 | ZHUO Y Q, XU X C, ZHANG H, et al. The development of pollution control technology in coal combustion in China[J]. Front Energy Power Eng China, 2007, 1(1): 9-15. |
2 | XIE H W, ZHANG Y. The research status of acid rain[J]. Adv Mater Res, 2013, 726/731: 4033-4036. |
3 | 陈颖, 胡天丁, 刘云利, 等. 二氧化硫在化学资源化利用中的研究进展[J]. 应用化学, 2022, 39(2): 223-234. |
CHEN Y, HU T D, LIU Y L, et al. Research progress of sulfur dioxide in chemical resource utilization[J]. Chin J Appl Chem, 2022, 39(2): 223-234. | |
4 | 贾立军, 刘炳光. 我国烟气脱硫技术综述[J]. 盐业与化工, 2006, 35(10): 35-39. |
JIA L J, LIU B G. Overview of flue gas desulfurization technology in China[J]. Salt Ind Chem Ind, 2006, 35(10): 35-39. | |
5 | 杨冬蕾, 杨再银. 我国脱硫石膏的综合利用现状[J]. 硫酸工业, 2018(9): 4-8. |
YANG D L, YANG Z Y. Comprehensive utilization status of desulfurized gypsum in China[J]. Sulfuric Acid Ind, 2018(9): 4-8. | |
6 | 雷月, 郭欣桐. 脱硫石膏岩土特性及制备建筑材料的应用研究[J]. 福建建材, 2023, 264(4): 5-8. |
LEI Y, GUO X T. Study on geotechnical characteristics of desulphurized gypsum and its application in preparation of building materials[J]. Fujian Build Mater, 2023, 264(4): 5-8. | |
7 | 黄伟, 陶珍东, 王晓波. 脱硫石膏作墙体材料的研究[J]. 砖瓦, 2010(5): 5-9. |
HUANG W, TAO Z D, WANG X B. Research on desulfurized gypsum as wall material[J]. Brick Tile, 2010(5): 5-9. | |
8 | ESCALANTE-GARCIA J I, MAGALLANES-RIVERA R X, GOROKHOVSKY A. Waste gypsum-blast furnace slag cement in mortars with granulated slag and silica sand as aggregates[J]. Constr Build Mater, 2009(23): 2851-2855. |
9 | 冯启彪, 任增茂, 田斌守, 等. 石膏-水泥-粉煤系复合胶凝材料的研究[J]. 新建材料, 2009(6): 14-16. |
FENG Q B, REN Z M, TIAN B S, et al. Study on plaster-cement-pulverized coal composite cementing materials[J]. New Mater, 2009(6): 14-16. | |
10 | 刘民荣, 李国忠, 柏玉婷. 聚合物改性脱硫建筑石膏的研究[J]. 武汉理工大学学报, 2009, 31(16): 23-26. |
LIU M R, LI G Z, BAI Y T. Study on desulfurization building gypsum modified by polymer[J]. J Wuhan Univ Technol, 2009, 31(16): 23-26. | |
11 | 高峻, 雷景新, 李训刚. 聚乙烯醇与硬脂酸醋化反应及性能的研究[J]. 高分子学报, 2001(1): 118-120. |
GAO J, LEI J X, LI X G. Study on acetylation of polyvinyl alcohol with stearic acid and its properties[J]. Acta Polym Sin, 2001(1): 118-120. | |
12 | 王松, 王家伟, 赵平源, 等.水泥掺量对磷石膏免烧砖性能的影响[J]. 非金属矿, 2021, 44(6): 19-22. |
WANG S, WANG J W, ZHAO P Y, et al. Effect of cement content on properties of phosphogypsum free bricks[J]. Non-metallic Mines, 2021, 44(6): 19-22. | |
13 | 付建. 硅酸盐水泥对建筑石膏强度和耐水性的影响[J]. 非金属矿, 2019, 42(5): 39-41. |
FU J. Effect of Portland cement on strength and water resistance of building gypsum[J]. Non-metallic Mines, 2019, 42(5): 39-41. | |
14 | SINGH M, CARG M. Fiber reinforced gypsum binder composite, its microstructure and durability[J]. Mater Struct, 2000(33): 525-528. |
15 | 陈明杰, 李磊. 硅烷偶联剂/聚乙烯醇改性石膏的防水性能[J]. 硅酸盐通报, 2014, 33(7): 1743-1747. |
CHEN M J, LI L. Water resistance of silane coupling agent/polyvinyl alcohol modified gypsum[J]. Bull Silica, 2014, 33 (7): 1743-1747. | |
16 | 潘红, 李国忠. 石膏砌块防水剂的制备与应用研究[J]. 砖瓦, 2012(7): 53-56. |
PAN H, LI G Z. Preparation and application of water repellent for gypsum blocks[J]. Brick Tile,2012(5): 53-56. | |
17 | 莫甲新. 有机硅改性苯丙乳液的合成及其在石膏防水中的应用[D]. 武汉: 湖北大学, 2014. |
MO J X. Synthesis of momethine, silicone modified styrene-acrylic emulsion and its application in gypsum waterproofing[D]. Wuhan: Hubei University, 2014. | |
18 | SILVA D A, MONTEIRO P J M. Hydration evolution of C3S-EVA composites analyzed by soft X-ray micoscopy[J]. Cem Concr Res, 2005, 35(2): 351-357. |
19 | WANG R, LI X G, WANG P M. Influence of polymer on cement hydration in SBR-modified cement pastes[J]. Cem Concr Compos, 2006, 36(9): 1744-1751. |
20 | SHI X X, WANG R, WANG P M. Dispersion and absorption of SBR latex in the system of mono dispersed cement[J]. Adv Mater Res, 2013, 687: 347353. |
21 | LIU Q, YANG G, DENG L, et al. Effect of synergistic modification of building materials based on α-hemihydrate phosphogypsum by portland cement/H-PDMS on water resistance [J]. ACS Omega, 2022, 7(45): 41667. |
22 | FENG X, ZHANG Y, WANG G, et al. Dual-surface modification of calcium sulfate whisker with sodium hexametaphosphate/silica and use as new water-resistant reinforcing fillers in papermaking[J]. Powder Technol, 2015, 271: 1-6. |
23 | PI P, LIU C, WEN X, et al. Improved performance of aluminum pigments encapsulated in hybrid inorganic-organic films[J]. Particuology, 2015, 19: 93-98. |
24 | HUI B, LI Y, HUANG Q, et al. Fabrication of smart coatings based on wood substrates with photoresponsive behavior and hydrophobic performance[J]. Mater Design, 2015, 84(5): 277-284. |
[1] | 徐众, 李军, 吴恩辉, 蒋燕. 添加提钒尾渣对膨胀石墨/石蜡复合相变材料稳定性和导电性的影响[J]. 应用化学, 2022, 39(3): 461-469. |
[2] | 杜新伟, 赵文杰, 呼微, 孙昭艳, 刘万利, 任天磊, 付明星. 聚醚醚酮/碳纳米管改性聚丙烯Janus复合隔膜的制备及性能[J]. 应用化学, 2022, 39(12): 1862-1869. |
[3] | 王森, 庞然, 李达, 李成宇, 张洪杰. 单一基质白光荧光粉Na3Sc2(PO4)3∶Tm3+,Dy3+的合成及发光性质[J]. 应用化学, 2021, 38(11): 0-0. |
[4] | 王森, 庞然, 李达, 李成宇, 张洪杰. 单一基质白光荧光粉Na3Sc2(PO4)3∶Tm3+,Dy3+的合成及发光性质[J]. 应用化学, 2021, 38(11): 1469-1478. |
[5] | 曹友錋, 庞烜, 项盛, 王天昶, 冯立栋, 边新超, 李杲, 陈学思. 溶剂诱导的聚乳酸/聚乳酸衍生物共结晶行为[J]. 应用化学, 2021, 38(1): 60-68. |
[6] | 文璞山, 何瑞, 赵光练, 梁兴, 李明勳. 可溶性聚酰亚胺液晶取向膜的制备与性能[J]. 应用化学, 2020, 37(12): 0-0. |
[7] | 文璞山, 何瑞, 赵光练, 梁兴, 李明勳. 可溶性聚酰亚胺液晶取向膜的制备与性能[J]. 应用化学, 2020, 37(12): 1403-1410. |
[8] | 陈明锋, 刘玉惠, 范先谋, 杨松伟, 林金火, 刘灿培, 黄海滨. 不饱和聚酯片状模塑料的模压成型与性能[J]. 应用化学, 2018, 35(10): 1222-1226. |
[9] | 毛新洁, 刘向荣, 赵顺省, 杨再文, 闫森. 2-吡咯类酰腙的合成、晶体结构及与小牛胸腺DNA的相互作用[J]. 应用化学, 2016, 33(8): 923-931. |
[10] | 李自东,赵晓礼,杨小牛. 聚合物太阳能电池器件热稳定性的研究进展[J]. 应用化学, 2016, 33(1): 1-17. |
[11] | 魏赞斌,王金池,江霞,李颖茜,陈广慧,解庆范. 2,4-二羟基苯乙酮缩异烟酰腙的实验和DFT理论研究:合成、晶体结构和性质及量化计算[J]. 应用化学, 2015, 32(9): 1014-1021. |
[12] | 丁伟, 宋成龙, 李博洋. 壬基酚甜菜碱两性表面活性剂的合成和抗温耐盐性能[J]. 应用化学, 2015, 32(8): 922-930. |
[13] | 郑建华, 刘俊, 肖尧, 戴玲林, 李海洋, 谭宇星, 冯泳兰, 蒋伍玖, 庾江喜, 邝代治. 基于水杨酰腙配体的二丁基锡配合物的合成、晶体结构、热稳定性及与DNA相互作用[J]. 应用化学, 2015, 32(5): 562-569. |
[14] | 陶贤平, 张跃军, 李侠, 贾旭. 二烯丙基甲基烷基溴化铵的结构与性质的关系[J]. 应用化学, 2015, 32(3): 342-349. |
[15] | 李兵营, 闫杰, 倪珏宸, 冯小庚, 邢永恒. 过碳酰胺分子合成条件优化、晶体结构及其热稳定性[J]. 应用化学, 2015, 32(12): 1423-1430. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||