应用化学 ›› 2024, Vol. 41 ›› Issue (9): 1238-1247.DOI: 10.19894/j.issn.1000-0518.240079
• 综合评述 • 上一篇
收稿日期:
2024-03-19
接受日期:
2024-04-18
出版日期:
2024-09-01
发布日期:
2024-10-09
通讯作者:
武振楠,王林
基金资助:
Le HONG1, Wei-Nan DONG2, Zhen-Nan WU2(), Lin WANG1()
Received:
2024-03-19
Accepted:
2024-04-18
Published:
2024-09-01
Online:
2024-10-09
Contact:
Zhen-Nan WU,Lin WANG
About author:
wuzn@jlu.edu.cnSupported by:
摘要:
金属纳米团簇因其独特的理化特性,在生物传感、生物成像、光动力治疗以及光热治疗等生物医学领域显示出巨大的应用潜力。 本综述系统地讨论了具有光响应行为的金属纳米团簇在生物诊断和治疗领域的应用进展,特别是它们在光敏化处理后的激发态电子行为及其在不同生物医学应用中的角色。 首先,介绍了金属纳米团簇吸收光能后的电子跃迁过程,以及它们在生物传感、成像中的应用。 其次,分析了金属纳米团簇在光动力治疗和光热治疗中的作用机制。 最后,提出了金属纳米团簇在生物医学领域应用的前景与挑战。 希望通过本综述,为金属纳米团簇材料的进一步研究与应用提供参考。
中图分类号:
洪乐, 董伟男, 武振楠, 王林. 金属纳米团簇的光响应行为在生物诊疗中的应用[J]. 应用化学, 2024, 41(9): 1238-1247.
Le HONG, Wei-Nan DONG, Zhen-Nan WU, Lin WANG. Application of Photoresponsive Behavior of Metal Nanoclusters in Biomedical Diagnostics and Therapy[J]. Chinese Journal of Applied Chemistry, 2024, 41(9): 1238-1247.
图5 金纳米簇的混合白蛋白纳米颗粒作为载体实现肿瘤的荧光成像和治疗示意图[62]
Fig.5 Scheme of gold nanoclusters of hybrid albumin nanoparticles as a tool for fluorescence imaging and tumor treatment[62]
1 | PELAZ B, ALEXIOU C, ALVAREZ-PUEBLA R A, et al. Diverse applications of nanomedicine[J]. ACS Nano, 2017, 11(3): 2313-2381. |
2 | YANG G, WANG Z, DU F, et al. Ultrasmall coinage metal nanoclusters as promising theranostic probes for biomedical applications[J]. J Am Chem Soc, 2023, 145(22): 11879-11898. |
3 | MATUS M F, HÄKKINEN H. Understanding ligand-protected noble metal nanoclusters at work[J]. Nat Rev Mater, 2023, 8(6): 372-389. |
4 | KANG X, LI Y, ZHU M, et al. Atomically precise alloy nanoclusters: syntheses, structures, and properties[J]. Chem Soc Rev, 2020, 49(17): 6443-6514. |
5 | YANG Z, YANG X, GUO Y, et al. A review on gold nanoclusters for cancer phototherapy[J]. ACS Appl Biomater, 2023, 6(11): 4504-4517. |
6 | QIAN S, WANG Z, ZUO Z, et al. Engineering luminescent metal nanoclusters for sensing applications[J]. Coordination Chem Rev, 2022, 451: 214268. |
7 | XIAO Y, WU Z, YAO Q, et al. Luminescent metal nanoclusters: biosensing strategies and bioimaging applications[J]. Aggregate, 2021, 2(1): 114-132. |
8 | ZHANG X, JIA Y, ZHANG N, et al. Self-assembly-induced enhancement of cathodic electrochemiluminescence of copper nanoclusters for a split-type matrix metalloproteinase 14 sensing platform[J]. Anal Chem, 2024, 96(28): 7265-7273. |
9 | PANG L, LI S, LIU B, et al. Colorimetric biosensor based on aptamer recognition-induced multi-DNA release and peroxidase-mimicking three-way junction DNA-Ag/PtNCs for the detection of Salmonella typhimurium[J]. Talanta, 2024, 274: 125930. |
10 | ZHANG B, WANG Y, WANG Y, et al. Chameleon-like response mechanism of gold-silver bimetallic nanoclusters stimulated by sulfur ions and their application in visual fluorescence sensing[J]. Anal Chem, 2024, 96(12): 5029-5036. |
11 | SHI Y, WU Z, QI M, et al. Multiscale bioresponses of metal nanoclusters[J]. Adv Mater, 2023, 36: 2310529. |
12 | YI S, HU Q, CHI Y, et al. Bright and renal-clearable Au nanoclusters with NIR-Ⅱ excitation and emission for high-resolution fluorescence imaging of kidney dysfunction[J]. ACS Mater Lett, 2023, 5(8): 2164-2173. |
13 | YANG G, LIU K, WANG Y, et al. Phosphorylation of NIR-Ⅱ emitting Au nanoclusters for targeted bone imaging and improved rheumatoid arthritis therapy[J]. Aggregate, 2024, 5(2): e435. |
14 | KIM D, KIM S J, JEONG J, et al. Multimodal golden DNA superstructures (GDSs) for highly efficient photothermal immunotherapy[J]. ACS Nano, 2024, 18(2): 1744-1755. |
15 | ZHU Y, ZHAO R, FENG L, et al. Dual nanozyme-driven PtSn bimetallic nanoclusters for metal-enhanced tumor photothermal and catalytic therapy[J]. ACS Nano, 2023, 17(7): 6833-6848. |
16 | LIU Z, LUO L, JIN R. Visible to NIR-Ⅱ photoluminescence of atomically precise gold nanoclusters[J]. Adv Mater, 2024, 36(8): 2309073 |
17 | TAVAKKOLI YARAKI M, LIU B, TAN Y N. Emerging strategies in enhancing singlet oxygen generation of nano-photosensitizers toward advanced phototherapy[J]. Nano-Micro Lett, 2022, 14(1): 123. |
18 | CHEN J, GU P, RAN G, et al. Atomically precise photothermal nanomachines[J]. Nat Mater, 2024, 23(2): 271-280. |
19 | PEI G X, ZHANG L, SUN X. Recent advances of bimetallic nanoclusters with atomic precision for catalytic applications[J]. Coordin Chem Rev, 2024, 506: 215692. |
20 | WENG B, LU K Q, TANG Z, et al. Stabilizing ultrasmall Au clusters for enhanced photoredox catalysis[J]. Nat Commun, 2018, 9(1): 1543. |
21 | ZHANG X D, WU D, SHEN X, et al. In vivo renal clearance, biodistribution, toxicity of gold nanoclusters[J]. Biomaterials, 2012, 33(18): 4628-4638. |
22 | PYO K, THANTHIRIGE V D, YOON S Y, et al. Enhanced luminescence of Au22(SG)18 nanoclusters via rational surface engineering[J]. Nanoscale, 2016, 8(48): 20008-20016. |
23 | ZENG Y, HAVENRIDGE S, GHARIB M, et al. Impact of ligands on structural and optical properties of Ag29 nanoclusters[J]. J Am Chem Soc, 2021, 143(25): 9405-9414. |
24 | LIU X, YUAN J, YAO C, et al. Crystal and solution photoluminescence of MAg24(SR)18 (M=Ag/Pd/Pt/Au) nanoclusters and some implications for the photoluminescence mechanisms[J]. J Phys Chem C, 2017, 121(25): 13848-13853. |
25 | PNIAKOWSKA A, KUMARANCHIRA RAMANKUTTY K, OBSTARCZYK P, et al. Gold-doping effect on two-photon absorption and luminescence of atomically precise silver ligated nanoclusters[J]. Angew Chem Int Ed, 2022, 61(43): e202209645. |
26 | GOSWAMI N, YAO Q, LUO Z, et al. Luminescent metal nanoclusters with aggregation-induced emission[J]. J Phys Chem Lett, 2016, 7(6): 962-975. |
27 | FEI W, TAO Y, QIAO Y, et al. Structural modification and performance regulation of atomically precise metal nanoclusters by phosphine[J]. Polyoxometalates, 2023, 2(4): 2957-9821. |
28 | WANG S, MENG X, DAS A, et al. A 200-fold quantum yield boost in the photoluminescence of silver-doped AgxAu25- x nanoclusters: the 13 th silver atom matters[J]. Angew Chem Int Ed, 2014, 126(9): 2408-2412. |
29 | WU Z, JIN R. On the ligand′s role in the fluorescence of gold nanoclusters[J]. Nano Lett, 2010, 10(7): 2568-2573. |
30 | NEGISHI Y, KURASHIGE W, KAMIMURA U. Isolation and structural characterization of an octaneselenolate-protected Au25 cluster[J]. Langmuir, 2011, 27(20): 12289-12292. |
31 | WU Z, LIU H, LI T, et al. Contribution of metal defects in the assembly induced emission of cu nanoclusters[J]. J Am Chem Soc, 2017, 139(12): 4318-4321. |
32 | KAILASA S K, BORSE S, KODURU J R, et al. Biomolecules as promising ligands in the synthesis of metal nanoclusters: sensing, bioimaging and catalytic applications[J]. Trends Environ Anal Chem, 2021, 32: e00140. |
33 | LI Q, WU J, YANG Q, et al. pH and redox dual-response disulfide bond-functionalized red-emitting gold nanoclusters for monitoring the contamination of organophosphorus pesticides in foods[J]. Anal Chem, 2021, 93(19): 7362-7368. |
34 | ZHOU W, ZHU J, TENG Y, et al. Novel dual fluorescence temperature-sensitive chameleon DNA-templated silver nanocluster pair for intracellular thermometry[J]. Nano Res, 2018, 11(4): 2012-2023. |
35 | DENG H H, SHI X Q, PENG H P, et al. Gold nanoparticle-based photoluminescent nanoswitch controlled by host-guest recognition and enzymatic hydrolysis for arginase activity assay[J]. ACS Appl Mater Interfaces, 2018, 10(6): 5358-5364. |
36 | FAN J, ZHANG X, TAN W, et al. Bioinspired surface ligand engineering regulates electron transfers in gold clusterzymes to enhance the catalytic activity for improving sensing performance[J]. Nano Lett, 2024, 24(25): 7800-7818. |
37 | LIU Y, GUAN B, XU Z, et al. A fluorescent assay for sensitive detection of kanamycin by split aptamers and DNA-based copper/silver nanoclusters[J]. Spectrochim Acta A, 2023, 286: 121953. |
38 | ZHANG B, WANG Y, WANG Y, et al. Chameleon-like response mechanism of gold-silver bimetallic nanoclusters stimulated by sulfur ions and their application in visual fluorescence sensing[J]. Anal Chem, 2024, 96(12): 5029-5036. |
39 | WANG X, ZHU X, SHI X, et al. Electrostatic interaction-induced aggregation-induced emission-type AgAu bimetallic nanoclusters as a highly efficient electrochemiluminescence emitter for ultrasensitive detection of glial fibrillary acidic protein[J]. Anal Chem, 2023, 95(6): 3452-3459. |
40 | HAN A, XIONG L, HAO S, et al. Highly bright self-assembled copper nanoclusters: a novel photoluminescent probe for sensitive detection of histamine[J]. Anal Chem, 2018, 90(15): 9060-9067. |
41 | SUN Y, SHU T, MA J, et al. Rational design of ZIF-8 for constructing luminescent biosensors with glucose oxidase and aie-type gold nanoclusters[J]. Anal Chem, 2022, 94(7): 3408-3417. |
42 | CHEN M, NING Z, GE X, et al. Ligands engineering of gold nanoclusters with enhanced photoluminescence for deceptive information encryption and glutathione detection[J]. Biosens Bioelectron, 2023, 219: 114805. |
43 | LUO Y, MIAO H, YANG X. Glutathione-stabilized Cu nanoclusters as fluorescent probes for sensing pH and vitamin B1[J]. Talanta, 2015, 144: 488-495. |
44 | LAN J, ZOU H, LIU Z, et al. A visual physiological temperature sensor developed with gelatin-stabilized luminescent silver nanoclusters[J]. Talanta, 2015, 143: 469-473. |
45 | QIAO Z, ZHANG J, HAI X, et al. Recent advances in templated synthesis of metal nanoclusters and their applications in biosensing, bioimaging and theranostics[J]. Biosens Bioelectron, 2021, 176: 112898. |
46 | NI S, LIU Y, TONG S, et al. Emerging NIR-Ⅱ luminescent gold nanoclusters for in vivo bioimaging[J]. J Anal Test, 2023, 7(3): 260-271. |
47 | CUI L, LI C, CHEN B, et al. Surface functionalized red fluorescent dual-metallic Au/Ag nanoclusters for endoplasmic reticulum imaging[J]. Microchim Acta, 2020, 187(11): 606. |
48 | OH E, FATEMI F K, CURRIE M, et al. PEGylated luminescent gold nanoclusters: synthesis, characterization, bioconjugation, and application to one- and two-photon cellular imaging[J]. Part Part Syst Char, 2013, 30(5): 453-466. |
49 | LIU J M, CHEN J T, YAN X P. Near infrared fluorescent trypsin stabilized gold nanoclusters as surface plasmon enhanced energy transfer biosensor and in vivo cancer imaging bioprobe[J]. Anal Chem, 2013, 85(6): 3238-3245. |
50 | NAIR L V, NAIR R V, SHENOY S J, et al. Blood brain barrier permeable gold nanocluster for targeted brain imaging and therapy: an in vitro and in vivo study[J]. J Mater Chem B, 2017, 5(42): 8314-8321. |
51 | PANG Z, YAN W, YANG J, et al. Multifunctional gold nanoclusters for effective targeting, near-infrared fluorescence imaging, diagnosis, and treatment of cancer lymphatic metastasis[J]. ACS Nano, 2022, 16(10): 16019-16037. |
52 | YANG Z, ZHANG Y, TANG L, et al. “All in one” nanoprobe Au-TTF-1 for target FL/CT bioimaging, machine learning technology and imaging-guided photothermal therapy against lung adenocarcinoma[J]. J Nanobiotechnol, 2024, 22(1): 22. |
53 | CHEN T, LIN H, CAO Y, et al. Interactions of metal nanoclusters with light: fundamentals and applications[J]. Adv Mater, 2022, 34(25): 2103918. |
54 | LIU C P, WU T H, LIU C Y, et al. Self-supplying O2 through the catalase-like activity of gold nanoclusters for photodynamic therapy against hypoxic cancer cells[J]. Small, 2017, 13(26): 1700278. |
55 | KAWASAKI H, KUMAR S, LI G, et al. Generation of singlet oxygen by photoexcited Au25(SR)18 clusters[J]. Chem Mater, 2014, 26(9): 2777-2788. |
56 | HAN R, ZHAO M, WANG Z, et al. Super-efficient in vivo two-photon photodynamic therapy with a gold nanocluster as a type Ⅰ photosensitizer[J]. ACS Nano, 2020, 14(8): 9532-9544. |
57 | KONG Y, SANTOS-CARBALLAL D, MARTIN D, et al. A NIR-Ⅱ-emitting gold nanocluster-based drug delivery system for smartphone-triggered photodynamic theranostics with rapid body clearance[J]. Mater Today, 2021, 51: 96-107. |
58 | CHEN Q, CHEN J, YANG Z, et al. NIR-Ⅱ light activated photodynamic therapy with protein-capped gold nanoclusters[J]. Nano Res, 2018, 11(10): 5657-5669. |
59 | YANG G, PAN X, FENG W, et al. Engineering Au44 nanoclusters for NIR-Ⅱ luminescence imaging-guided photoactivatable cancer immunotherapy[J]. ACS Nano, 2023, 17(16): 15605-15614. |
60 | JIANG X, DU B, HUANG Y, et al. Cancer photothermal therapy with ICG-conjugated gold nanoclusters[J]. Bioconjugate Chem, 2020, 31(5): 1522-1528. |
61 | CHEN J, GONG M, FAN Y, et al. Collective plasmon coupling in gold nanoparticle clusters for highly efficient photothermal therapy[J]. ACS Nano, 2022, 16(1): 910-920. |
62 | PARK S, KIM H, LIM S C, et al. Gold nanocluster-loaded hybrid albumin nanoparticles with fluorescence-based optical visualization and photothermal conversion for tumor detection/ablation[J]. J Control Release, 2019, 304: 7-18. |
63 | WANG X, LI C, QIAN J, et al. NIR-Ⅱ responsive hollow magnetite nanoclusters for targeted magnetic resonance imaging-guided photothermal/chemo-therapy and chemodynamic therapy[J]. Small, 2022, 18(9): 2200373. |
64 | SHI W Q, ZENG L, HE R L, et al. Near-unity NIR phosphorescent quantum yield from a room-temperature solvated metal nanocluster[J]. Science, 2024, 383(6680): 326-330. |
[1] | 杨懿芊, 严晓霞, 彭皓, 吴爱国, 杨方. 近红外二区光驱动的光动力治疗在克服肿瘤乏氧环境中的研究进展[J]. 应用化学, 2024, 41(7): 925-936. |
[2] | 周莹, 刘赛男, 蔡砺寒, 张健夫, 逄茂林. 铁掺杂的聚2-硝基-1,4-苯二胺纳米球的制备及在光热/光动力/化学动力学肿瘤治疗中的应用[J]. 应用化学, 2021, 38(2): 0-0. |
[3] | 周莹, 刘赛男, 蔡砺寒, 张健夫, 逄茂林. 铁掺杂的聚2-硝基-1,4-苯二胺纳米球的制备及在光热/光动力/化学动力学肿瘤治疗中的应用[J]. 应用化学, 2021, 38(2): 181-187. |
[4] | 王玉鹏, 周东方, 程延祥, 黄宇彬. 血红蛋白/光敏剂复合药物体系用于光动力治疗[J]. 应用化学, 2018, 35(12): 1442-1448. |
[5] | 刘宏, 薛金萍, 江舟, 陈耐生, 黄金陵. 肿瘤光动力治疗临床应用的光敏剂及其研究概况[J]. 应用化学, 2013, 30(12): 1386-1392. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||