应用化学 ›› 2023, Vol. 40 ›› Issue (12): 1700-1711.DOI: 10.19894/j.issn.1000-0518.230148
收稿日期:
2023-05-17
接受日期:
2023-11-21
出版日期:
2023-12-01
发布日期:
2024-01-03
通讯作者:
刘应亮
基金资助:
Jing-Yi HU, Ya-Tong ZHENG, Wei-Hao YE, Ying-Liang LIU()
Received:
2023-05-17
Accepted:
2023-11-21
Published:
2023-12-01
Online:
2024-01-03
Contact:
Ying-Liang LIU
About author:
tliuyl@scau. edu. cnSupported by:
摘要:
通过水热法制备出以含N原子的芳香化合物、柠檬酸钠和乙二胺为原料的水溶性碳点紫外吸收剂,并对不同芳香族化合物制备的碳点进行老化试验,最终筛选出具有耐老化性能的碳点(A-CDs),其中,富含—COOH、—NH2等官能团且具有紫外全吸收性能,并进一步通过优化反应条件提高了其吸收性能。 将A-CDs与聚乙烯醇(PVA)复合,形成高性能的紫外屏蔽膜。 当CDs的质量分数从0.02%增加至0.1%时,紫外透过率从8%降低至3%,说明碳点能在薄膜中稳定存在。 同时,碳点的加入可以降低薄膜在紫外照射下的衰老速率,维持薄膜的力学性能。
中图分类号:
胡靖怡, 郑雅桐, 叶炜浩, 刘应亮. N-杂环芳基水溶性碳点全光谱紫外吸收剂的合成与应用[J]. 应用化学, 2023, 40(12): 1700-1711.
Jing-Yi HU, Ya-Tong ZHENG, Wei-Hao YE, Ying-Liang LIU. Preparation and Application of N-Heterocyclic Aryl Water-Soluble Carbon Dots Full-Spectrum UV Absorbers[J]. Chinese Journal of Applied Chemistry, 2023, 40(12): 1700-1711.
图7 不同碳点紫外老化下的UV-Vis谱图A. 2-AE-CDs; B. A-CDs; C. 3-AE-CDs; D. APE-CDs; E. PCA-CDs; F. OPE-CDs; G. ACL-CDs
Fig.7 UV-Vis spectra of different CDs under UV aging
Sample | Aging time/d | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Initial | 3 | 5 | 7 | 9 | 11 | ||||||
Parallel comparison | Contrast with blank | Parallel comparison | Contrast with blank | Parallel comparison | Contrast with blank | Parallel comparison | Contrast with blank | Parallel comparison | Contrast with blank | ||
Blank | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0.02% | 6.3 | 1.7 | 6.2 | 2.0 | 6.0 | 1.4 | 6.8 | 1.7 | 7.7 | 2.2 | 5.0 |
0.04% | 11.6 | 2.4 | 12.8 | 2.4 | 12.2 | 3.7 | 13.5 | 3.2 | 12.2 | 2.4 | 11.3 |
0.06% | 13.6 | 2.0 | 12.1 | 1.4 | 14.4 | 4.4 | 15.9 | 3.0 | 15.8 | 3.6 | 14.0 |
0.08% | 13.1 | 2.4 | 14.3 | 4.6 | 15.8 | 5.9 | 17.2 | 6.8 | 18.1 | 6.2 | 18.8 |
0.1% | 20.2 | 0 | 20.2 | 2.8 | 19.8 | 2.8 | 21.4 | 4.2 | 22.2 | 2.4 | 21.4 |
表1 A-CDs@PVA薄膜在UV辐射下黄变色差值
Table 1 A-CDs@PVA yellow color difference of film under UV radiation
Sample | Aging time/d | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Initial | 3 | 5 | 7 | 9 | 11 | ||||||
Parallel comparison | Contrast with blank | Parallel comparison | Contrast with blank | Parallel comparison | Contrast with blank | Parallel comparison | Contrast with blank | Parallel comparison | Contrast with blank | ||
Blank | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0.02% | 6.3 | 1.7 | 6.2 | 2.0 | 6.0 | 1.4 | 6.8 | 1.7 | 7.7 | 2.2 | 5.0 |
0.04% | 11.6 | 2.4 | 12.8 | 2.4 | 12.2 | 3.7 | 13.5 | 3.2 | 12.2 | 2.4 | 11.3 |
0.06% | 13.6 | 2.0 | 12.1 | 1.4 | 14.4 | 4.4 | 15.9 | 3.0 | 15.8 | 3.6 | 14.0 |
0.08% | 13.1 | 2.4 | 14.3 | 4.6 | 15.8 | 5.9 | 17.2 | 6.8 | 18.1 | 6.2 | 18.8 |
0.1% | 20.2 | 0 | 20.2 | 2.8 | 19.8 | 2.8 | 21.4 | 4.2 | 22.2 | 2.4 | 21.4 |
图10 A-CDs@PVA薄膜老化时间(A)和A-CDs的质量分数(B)与紫外透过率的关系
Fig.10 The relationship between A-CDs@PVA film aging time (A) and mass fraction (B) of A-CDs and UV transmittance
Aging time/h | Tensile strength/MPa | |
---|---|---|
Blank | A-CDs@PVA film | |
0 | 4.0 | 3.9 |
100 | 3.5 | 3.5 |
200 | 2.7 | 3.1 |
300 | 2.0 | 2.5 |
450 | 1.1 | 1.9 |
600 | 0.5 | 1.2 |
表2 A-CDs@PVA 薄膜的力学性能
Table 2 Mechanical properties of A-CDs@PVA films
Aging time/h | Tensile strength/MPa | |
---|---|---|
Blank | A-CDs@PVA film | |
0 | 4.0 | 3.9 |
100 | 3.5 | 3.5 |
200 | 2.7 | 3.1 |
300 | 2.0 | 2.5 |
450 | 1.1 | 1.9 |
600 | 0.5 | 1.2 |
1 | WINKLER P, TREPTE S. Ozone decline and UV increase[J]. Gesundheitswesen, 2004, 66: S31-S36. |
2 | LEE S, LEE I, KIM H, et al. Influence of UV-Ozone treatment to hole-collecting buffer layer on the performance of polymer solar cells[J]. J Nanoelectron Optoelectron, 2010, 5(2): 195-198. |
3 | ZAYAT M, GARCIA PAREJO P, LEVY D. Preventing UV-light damage of light sensitive materials using a highly protective UV-absorbing coating[J]. Chem Soc Rev, 2007, 36(8): 1270-1281. |
4 | MAO T, HE X, LIU G, et al. Fluorescent polymers via post-polymerization modification of Biginelli-type polymers for cellular protection against UV damage[J]. Polym Chem, 2021, 12(6): 852-857. |
5 | 朱清梅, 陈秀琼, 李东泽, 等. 食品软包装用透明高阻隔涂料: PVA涂料研究进展[J]. 精细化工, 2022, 39(9): 1729-1738, 1746. |
ZHU Q M, CHEN X Q, LI D Z, et al. Research progress on transparent and high barrier PVA coatings for flexible food packaging[J]. Fine Chem, 2022, 39(9): 1729-1738, 1746. | |
6 | 杜金星, 华建社, 袁超. 聚乙烯醇(PVA)对醇基粉煤灰铸造涂料性能的影响[J]. 铸造技术, 2017, 38(12): 2910-2914. |
DU J X, HUA J S, YUAN C. Effect of PVA on properties of alcohol-based fly ash mold coating[J]. Foundry Technol, 2017, 38(12): 2910-2914. | |
7 | 赵同建, 何钦雄, 秦丽波, 等. 纳米CaCO3改性PVA水性内墙涂料的研究[J]. 弹性体, 2008(2): 38-41. |
ZHAO T J, HE Q X, QING L B, et al. Study on the watery PVA coating modified with nano-CaCO3[J]. China Elastomerics, 2008(2): 38-41. | |
8 | IRIGOYEN M, ARAGON E, PERRIN F X, et al. Effect of UV aging on electrochemical behavior of an anticorrosion paint[J]. Prog Org Coat, 2007, 59(3): 259-264. |
9 | POSPÍŠIL J, NEŠPUREK S. Photostabilization of coatings. mechanisms and performance[J]. Prog Polym Sci, 2000, 25(9): 1261-1335. |
10 | KIM S, HWANG T G, NAMGOONG J W, et al. Effect of linker moiety on linear dimeric benzotriazole derivatives as highly stable UV absorber for transparent polyimide film[J]. Dyes Pigm, 2020, 180: 108469. |
11 | 温娜, 江涛, 王东. 水性紫外吸收剂在水性聚氨酯涂料中的应用[J]. 中国涂料, 2018, 33(8): 54-58. |
WEN N, JIANG T, WANG D. The application of waterborne UV absorbers in waterborne polyurethane coatings[J]. China Coat, 2018, 33(8): 54-58. | |
12 | QIU J M, YE W H, XU X K, et al. Controllable synthesis of carbon dots@CaCO3 composites: tunable morphology, UV absorption properties, and application as an ultraviolet absorber[J]. Cryst Growth Des, 2022, 22(7): 4357-4365. |
13 | 龙飞, 卢平, 任璐, 等. 二苯甲酮类紫外吸收剂人体暴露的研究进展[J]. 环境与健康杂志, 2015, 32(7): 643-646. |
LONG F, LU P, REN L, et al. Human exposure to benzophenone-type UV filters:a review of recent studies[J]. J Environ Health, 2015, 32(7): 643-646. | |
14 | QIU J, YE W, CHEN C, et al. Toward efficient broad-spectrum UV absorption of carbon dots: facile preparation, performance characterization and its application as UV absorbers[J]. J Ind Eng Chem, 2023, 117: 442-449. |
15 | CUI Z, LI X, WANG X, et al. Structure and properties of N-heterocycle-containing benzotriazoles as UV absorbers[J]. J Mol Struct, 2013, 1054: 94-99. |
16 | 郑春阳, 郑静, 范玲, 等. β-二酮类UV-A紫外线吸收剂的合成[J]. 化学试剂, 2006(9): 538-540. |
ZHENG C Y, ZHENG J, FAN L, et al. Synthesis of β-dikedione compounds for UV-A ultraviolet absorbent[J]. Chem Reag, 2006(9): 538-540. | |
17 | 王树清, 高崇. 紫外线吸收剂水杨酸对-叔丁基苯酯的合成[J]. 塑料助剂, 2007(4): 27-29. |
WANG S Q, GAO C. Synthesis of ultraviolet absorber p-tert-butylphenyl salicylate[J]. Plast Addit, 2007(4): 27-29. | |
18 | XING J, YUAN D, XIE H, et al. Preparation of efficient ultraviolet-protective transparent coating by using a titanium-containing hybrid oligomer[J]. ACS Appl Mater Interfaces, 2021, 13(4): 5592-5601. |
19 | XU Y L, XU Z Q, CHEN C C, et al. Synthesis of efficient broad-spectrum UV-absorbing carbon dots as UV absorbers using natural rutin as raw material and their multifunctional applications under acid-base amphoteric conditions[J]. Surf Interfaces, 2023, 38: 102810. |
20 | 胡广齐. 碳、硅量子点及其复合材料的制备、UV吸收性能研究与应用[D]. 广东: 华南农业大 学, 2019. |
HU G Q. The synthesis and UV absorption property research and its applications of carbon and silicon quantum dots and their composite materials[D]. Guangdong: South China Agricultural University, 2019. | |
21 | NAN X, SGAB C, CXAB C, et al. Carbon quantum dots derived from waste acorn cups and its application as an ultraviolet absorbent for polyvinyl alcohol film[J]. Appl Surf Sci, 2021, 556: 149774. |
22 | MA W, JIANG X, LIU Y, et al. Synthesis of a novel water-soluble polymeric UV-absorber for cotton[J]. Chin Chem Lett, 2011, 22(12): 1489-1491. |
23 | XU Y, XU Z, CHEN C, et al. Synthesis of nitrogen-doped carbon dots with 3-aminoquinoline and citric acid as an absorbent in full ultraviolet bands and application of transparent sunscreen umbrella[J]. Dyes Pigm, 2023, 214: 111204. |
24 | XIA C, ZHU S, FENG T, et al. Evolution and synthesis of carbon dots: from carbon dots to carbonized polymer dots[J].Adv Sci, 2019, 6(23): 1901316. |
25 | KHAN A, EZATI P, RHIM J W. Chitosan/starch-based active packaging film with N,P-doped carbon dots for meat packaging[J]. ACS Appl Bio Mater, 2023, 6(3): 1294-1305. |
26 | ZHUO K, SUN D, XU P, et al. Green synthesis of sulfur- and nitrogen-co-doped carbon dots using ionic liquid as a precursor and their application in Hg2+ detection[J]. J Lumin, 2017, 187: 227-234. |
27 | WU Y, LI C, MEI H, et al. Carbon quantum dots derived from different carbon sources for antibacterial applications[J]. Antibiotics-Basel, 2021, 10(6): 623. |
28 | 唐志姣, 李攻科, 胡玉玲. 氮掺杂碳点的制备及在定量分析中的应用[J]. 化学进展, 2016, 28(10): 1455-1461. |
TANG Z J, LI G K, HU Y L. Advances in preparation and applications in quantitative analysis of nitrogen-doped carbon dots[J]. Prog Chem, 2016, 28(10): 1455-1461. | |
29 | JIANG K, SUN S, ZHANG L, et al. Red, green, and blue luminescence by carbon dots: full-color emission tuning and multicolor cellular imaging[J]. Angew Chem Int Ed Engl, 2015, 54(18): 5360-5363. |
30 | DONG Y, YU R, ZHAO B, et al. Revival of insulating polyethylenimine by creatively carbonizing with perylene into highly crystallized carbon dots as the cathode interlayer for high-performance organic solar cells[J].ACS Appl Mater Interfaces, 2022, 14(1): 1280-1289. |
31 | 孟枫舒, 张宏翔, 陈乾, 等. 壳聚糖/季氨化聚乙烯醇燃料电池阴离子交换膜的制备与表征[J]. 化工新型材料, 2018, 46(8): 115-118. |
MENG F S, ZHANG H X, CHEN Q, et al. Preparation and characterization of quaternized poly(vinyl alcohol)/chitosan composite for anion exchange membrane[J]. New Chem Mater, 2018, 46(8): 115-118. | |
32 | PAN X, ZHANG Y, SUN X, et al. The effect of carbon chain length of starting materials on the formation of carbon dots and their optical properties[J]. Mater Res Express, 2018, 5(4): 045603. |
33 | ZHOU Y, CHEN G, MA C, et al. Nitrogen-doped carbon dots with bright fluorescence for highly sensitive detection of Fe3+ in environmental waters[J]. Spectrochim Acta Part A, 2023, 293: 122414. |
34 | XU Z, HUANG W, CHEN C, et al. Preparation of new full UV-absorbing carbon dots from quercetin and their application in UV-absorbing systems for waterborne polyurethane coatings[J]. Mater Today Chem, 2023, 27: 101269. |
35 | SONG Y B, ZHU S J, ZHANG S T, et al. Investigation from chemical structure to photoluminescent mechanism: a type of carbon dots from the pyrolysis of citric acid and an amine[J]. J Mater Chem C, 2015, 3(23): 5976-5984. |
36 | XUE S, LI P, SUN L, et al. The formation process and mechanism of carbon dots prepared from aromatic compounds as precursors: a review[J]. Small, 2023, 19(31): 2206180. |
37 | FENG X, ZHAO Y, JIANG Y, et al. Use of carbon dots to enhance UV-blocking of transparent nanocellulose films[J]. Carbohydr Polym, 2017, 161: 253-260. |
38 | 肖斌. 高热稳定性碳点及其荧光薄膜的制备与性能研究[D]. 太原: 太原理工大学, 2021. |
XIAO B. Study onpreparation and properties of thermal stability carbon dots and their fluorescent films[D]. Taiyuan: Taiyuan University of Technology, 2021. | |
39 | 陈浩, 刘浩. 碳点/纤维素纳米纤维复合薄膜的制备及性能研究[J]. 中国造纸, 2023, 42(3): 69-77. |
CHEN H, LIU H. Preparation and characterization of carbon dots/cellulose nanofiber composite films[J]. China Pulp Pap, 2023, 42(3): 69-77. |
[1] | 于盼, 王光辉, 郭建花, 郭峤志, 董川. 黄色荧光碳点用于盐酸金霉素的检测[J]. 应用化学, 2023, 40(7): 1017-1023. |
[2] | 王睿哲, 胡广齐, 叶炜浩, 胡超凡, 庄健乐, 雷炳富, 李唯, 刘应亮. 一种高紫外-短波蓝光屏蔽的油溶性碳点的水热制备及其应用[J]. 应用化学, 2023, 40(1): 59-68. |
[3] | 王婷, 魏奇, 付强, 李伟, 王世伟. 钙钛矿光伏电池封装材料与工艺研究进展[J]. 应用化学, 2022, 39(9): 1321-1344. |
[4] | 杨振华, 孙宣森, 张月霞, 曹宇娟, 张琪琦, 郭峤志, 范小鹏, 李忠平, 董川. 氮硫共掺杂碳点的制备及其对牛奶中土霉素的检测[J]. 应用化学, 2022, 39(9): 1382-1390. |
[5] | 焦陈斯帆, 郑少波, 许鹏军, 王炜, Takebe Hiromichi, Mukai Kusuhiro, 余仲达. 评价表面活性剂溶液泡沫性能的方法—真球气泡法[J]. 应用化学, 2022, 39(7): 1108-1118. |
[6] | 齐海燕, 张琛琪, 李金龙, 李军. 氮硫掺杂碳点的制备及检测铜离子[J]. 应用化学, 2022, 39(6): 980-989. |
[7] | 徐众, 李军, 吴恩辉, 蒋燕. 添加提钒尾渣对膨胀石墨/石蜡复合相变材料稳定性和导电性的影响[J]. 应用化学, 2022, 39(3): 461-469. |
[8] | 杜新伟, 赵文杰, 呼微, 孙昭艳, 刘万利, 任天磊, 付明星. 聚醚醚酮/碳纳米管改性聚丙烯Janus复合隔膜的制备及性能[J]. 应用化学, 2022, 39(12): 1862-1869. |
[9] | 宋金萍, 马琦, 梁晓敏, 尚建鹏, 董川. 高荧光量子产率钕、氮双掺杂碳点用于柳氮磺吡啶检测及Hela细胞成像[J]. 应用化学, 2022, 39(11): 1726-1734. |
[10] | 孟丹, 郑开元, 陈珊珊, 卓钊龙, 王丽丽. 硅、氮共掺杂碳点荧光粉的制备及发光性能[J]. 应用化学, 2022, 39(11): 1766-1773. |
[11] | 李赫, 李宫, 宫雪, 阮明波, 韩策, 宋平, 徐维林. Pt/C催化剂长时间ORR过程性能衰减的机理[J]. 应用化学, 2022, 39(10): 1564-1571. |
[12] | 赵常利, 秦明高, 窦晓秋, 冯传良. 纳米颗粒增强的手性超分子水凝胶成骨性能[J]. 应用化学, 2022, 39(1): 177-187. |
[13] | 赵莹, 邵奕嘉, 李罗钱, 任建伟, 廖世军. 富锂正极材料的衰减机理及循环稳定性提升的研究进展[J]. 应用化学, 2022, 39(02): 205-222. |
[14] | 乔宗文, 陈涛. 具有高效长侧链的芘磺酸型磺化聚砜阳离子交换膜的性能[J]. 应用化学, 2021, 38(6): 668-674. |
[15] | 吴振江, 霍晓伟, 刘守军, 杨颂. 水性颜料体系无树脂色浆的制备与应用[J]. 应用化学, 2021, 38(2): 212-219. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||