[1] LI L, LIU X, PAL S, et al. Extreme ultraviolet resist materials for sub-7 nm patterning[J]. Chem Soc Rev, 2017, 46(16): 4855-4866. [2] 徐宏, 王莉, 何向明. 半导体产业的关键材料-光刻胶[J]. 新材料产业, 2019, 9: 35-40. XU H, WANG L, HE X M. The key material of the semiconductor industry-photoresist[J]. New Mater Ind, 2019, 9: 35-40. [3] CHEN Y F. Nanofabrication by electron beam lithography and its applications: a review[J]. Microelectron Eng, 2015, 135: 57-72. [4] ESCHBAUMER C, HEUSINGER N, HOHLE C, et al. Chemically amplified main chain scission: new concept to reduce line edge roughness and outgassing[J]. J Photopolym Sci Technol, 2002, 15(4): 673-676. [5] FRECHET J M J, BOUCHARD F, EICHLER E, et al. Thermally depolymerizable polycarbonates.5.acid-catalyzed thermolysis of allylic and benzylic polycarbonates-a new route to resist imaging[J]. Polym J, 1987, 19 (1): 31-49. [6] MACDONALD S A, WILLSON C G, FRECHET J M J. Chemical amplification in high-resolution imaging-systems[J]. Acc Chem Res, 1994, 27(6): 151-158. [7] GANGNAIK A S, GEORGIEV Y M, HOLMES J D. New generation electron beam resists: a review[J]. Chem Mater, 2017, 29(5): 1898-1917. [8] CHANG T H P, MANKOS M, LEE K Y, et al. Multiple electron-beam lithography[J]. Microelectron Eng, 2001, 57/58: 117-135. [9] MORETTO L M, TORMEN M, DE LEO M, et al. Polycarbonate-based ordered arrays of electrochemical nanoelectrodes obtained by e-beam lithography[J]. Nanotechnology, 2011, 22(18): 185305. [10] VIRGILIO F, PRASCIOLU M, UGO P, et al. Development of electrochemical biosensors by e-beam lithography for medical diagnostics[J]. Microelectron Eng, 2013, 111:320-324. [11] ZHENG N, MIN H D, JIANG Y W, et al. Polycarbonate as a negative-tone resist for electron-beam lithography[J]. J Vac Sci Technol B, 2018, 36(2): 021603. [12] ABBAS A S, YAVUZ M, CUI B. Polycarbonate electron beam resist using solvent developer[J]. Microelectron Eng, 2014, 113: 140-142. [13] YANG G W, WU G P, CHEN X, et al. Directed self-assembly of polystyrene-b-poly(propylene carbonate) on chemical patterns via thermal annealing for next generation lithography[J]. Nano Lett, 2017, 17(2): 1233-1239. [14] JACOBBERGER R M, THAPAR V, WU G P, et al. Boundary-directed epitaxy of block copolymers[J]. Nat Commun, 2020, 11: 4151. [15] PANG Y, WAN L, HUANG G, et al. Controlling block copolymer-substrate interactions by homopolymer brushes/mats[J]. Macromolecules, 2017, 50(17): 6733-6741. [16] ZHOU H J, YANG G W, ZHANG Y Y, et al. Bioinspired block copolymer for mineralized nanoporous membrane[J]. ACS Nano, 2018, 12(11): 11471. [17] LU X Y, LUO H, WANG K, et al. CO2-based dual-tone resists for electron beam lithography[J]. Adv Funct Mater, 2021, 31(13): 2007417. [18] ITO H. Dissolution behavior of chemically amplified resist polymers for 248-, 193-, and 157-nm lithography[J]. IBM J Res Dev, 2001, 45(5): 683-695. [19] YANG G W, ZHANG Y Y, XIE R, et al. Scalable bifunctional organoboron catalysts for copolymerization of CO2 and epoxides with unprecedented efficiency[J]. J Am Chem Soc, 2020, 142(28): 12245. [20] YANG G W, XU C K, XIE R, et al. Pinwheel-shaped tetranuclear organoboron catalysts for perfectly alternating copolymerization of CO2 and epichlorohydrin[J]. J Am Chem Soc, 2021, 143(9): 3455-3465. [21] YANG C C, KO F H, WANG M Y, et al. Migration-adsorption mechanism of metallic impurities out of chemically amplified photoresist onto silicon-based substrates[J]. J Electrochem Soc, 2000, 147(10): 3853-3858. [22] KUMAR R, SINGH N, CHANG C K, et al. Deep-ultraviolet resist contamination for copper/low-k dual-damascene patterning[J]. J Vac Sci Technol B, 2004, 22(3): 1052-1059. [23] TSUBAKI H, TARUTANI S, INOUE N, et al.EUV resist materials design for 15 nm half pitch and below[J]. J Photopolym Sci Technol, 2013, 26(5): 649-657. |