[1] LEIBLER L. Theory of microphase separation in block co-polymers[J]. Macromolecules, 1980, 13(6): 1602-1617. [2] COULON G, RUSSELL T P, DELINE V R, et al. Surface-induced orientation of symmetric, diblock copolymers-a secondary ion mass-spectrometry study[J]. Macromolecules, 1989, 22(6): 2581-2589. [3] RUSSELL T P, COULON G, DELINE V R, et al. Characteristics of the surface-induced orientation for symmetric diblock PS/PMMA copolymers[J]. Macromolecules, 1989, 22(12): 4600-4606. [4] COULON G, COLLIN B, AUSSERRE D, et al. Islands and holes on the free-surface of thin diblock copolymer films.1.Characteristics of formation and growth[J]. J Phys, 1990, 51(24): 2801-2811. [5] PICKETT G T, WITTEN T A, NAGEL S R. Equilibrium surface orientation of lamellae[J]. Macromolecules, 1993, 26(12): 3194-3199. [6] JIN X S, PANG Y Y, JI S X. From self-assembled monolayers to chemically patterned brushes: controlling the orientation of block copolymer domains in films by substrate modification[J]. Chinese J Polym Sci, 2016, 34(6): 659-678. [7] STEIN G E, MAHADEVAPURAM N, MITRA I. Controlling interfacial interactions for directed self assembly of block copolymers[J]. J Polym Sci, 2015,53 (2): 96-102. [8] MANSKY P, LIU Y, HUANG E, et al. Controlling polymer-surface interactions with random copolymer brushes[J]. Science, 1997, 275(5305): 1458-1460. [9] IN I, LA Y H, PARK S M, et al. Side-chain-grafted random copolymer brushes as neutral surfaces for controlling the orientation of block copolymer microdomains in thin films[J]. Langmuir, 2006, 22(18): 7855-7860. [10] KIM B H, LEE D H, KIM J Y, et al. Mussel-inspired block copolymer lithography for low surface energy materials of teflon, graphene, and gold[J]. Adv Mater, 2011, 23(47): 5618-5622. [11] JI S X, LIU G L, ZHENG F, et al.Preparation of neutral wetting brushes for block copolymer films from homopolymer blends[J]. Adv. Mater, 2008, 20(16): 3054-3060. [12] LIU G L, JI S X, STUEN K O, et al. Modification of a polystyrene brush layer by insertion of poly(methyl methacrylate) molecules[J]. J Vac Sci Technol, 2009, 27(6): 3038-3042. [13] SHE M S, LO T Y, HO R M. Long-range ordering of block copolymer cylinders driven by combining thermal annealing and substrate functionalization[J]. ACS Nano, 2013, 7(3): 2000-2011. [14] CERESOLI M, PALERMO M, FERRARESE LUPI F, et al. Neutral wetting brush layers for block copolymer thin films using homopolymer blends processed at high temperatures[J]. Nanotechnology, 2015, 26(41):1-12. [15] JI S X, LIAO W, NEALEY P F. Block cooligomers: a generalized approach to controlling the wetting behavior of block copolymer thin films[J]. Macromolecules, 2010, 43(16): 6919-6922. [16] HUANG E, PRUZINSKY S, RUSSELL T P, et al. Neutrality conditions for block copolymer systems on random copolymer brush surfaces[J]. Macromolecules, 1999, 32(16): 5299-5303. [17] HUANG E, RUSSELL T P, HARRISON C, et al. Using surface active random copolymers to control the domain orientation in diblock copolymer thin films[J]. Macromolecules, 1998, 31(22): 7641-7650. [18] MANSKY P, RUSSELL T P, HAWKER C J, et al. Ordered diblock copolymer films on random copolymer brushes[J]. Macromolecules, 1997, 30(22): 6810-6813. [19] YANG X M, PETERS R D, NEALEY P F, et al. Guided self-assembly of symmetric diblock copolymer films on chemically nanopatterned substrates[J]. Macromolecules, 2000, 33(26): 9575-9582. [20] KIM S O, SOLAK H H, STOYKOVICH M P, et al. Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates[J]. Nature, 2003, 424(6947): 411-414. [21] LIU C C, HAN E, ONSES M S, et al. Fabrication of lithographically defined chemically patterned polymer brushes and mats[J]. Macromolecules, 2011, 44(7): 1876-1885. [22] LIU C C, RAMIREZ-HERNANDEZ A, HAN E, et al. Chemical patterns for directed self-assembly of lamellae-forming block copolymers with density multiplication of features[J]. Macromolecules, 2013, 46(4): 1415-1424. [23] LIU C C,FRANKE E, MIGNOT Y, et al. Directed self-assembly of block copolymers for 7 nanometre FinFET technology and beyond[J]. Nat Electron, 2018, 1(10): 562-569. [24] JI S X, WAN L, LIU C C, et al. Directed self-assembly of block copolymers on chemical patterns: a platform for nanofabrication[J]. Prog Polym Sci, 2016, 54/55: 76-127. [25] PIETROY D, GEREIGE I, GOURGON C. Automatic detection of NIL defects using microscopy and image processing[J]. Microelectron Eng, 2013, 112: 163-167. [26] MURPHY J N, HARRIS K D, BURIAK J M. Automated defect and correlation length analysis of block copolymer thin film nanopatterns[J]. PLoS One,2015, 10(7): 1-32. [27] GRONHEID R, HOHLE C K, CHEVALIER X, et al. Automated lamellar block copolymer process characterization[C]. Adv Pattern Mater Proc XXXV, 2018: 1-6. [28] ROBERTS L. Machine perception of three-dimensional solids[M]. MIT Press, 1963: 25-36. [29] HANY F, EERO P S. Optimally rotation-equivariant directional derivative kernels[J]. Comput Anal Im Pattern, 1997: 207-214. [30] CANNY J. A computational approach to edge-detection[J]. IEEE Tran Pattern Anal Mach Intell,1986, 8(6): 679-698. [31] BRIECHLE K, HANEBECK U D. Template matching using fast normalized cross correlation[J]. Opt Pattern Rec XII, 2001, 4387: 95-102. [32] ZHANG K, LU J B, LAFRUIT G, et al. Robust stereo matching with fast normalized cross-correlation over shape-adaptive regions[J]. IEEE Int Conf IM Proc, 2009(1/2/3/4/5/6): 2357-2360. [33] CHAUDHARI R E, DHOK S B. An optimized approach to pipelined architecture for fast 2d normalized cross-correlation[J]. J Circuits Sys Comput, 2019, 28(12):1-17. [34] HAN E, STUEN K O, LA Y H, et al. Effect of composition of substrate-modifying random copolymers on the orientation of symmetric and asymmetric diblock copolymer domains[J]. Macromolecules, 2008, 41(23): 9090-9097. [35] MERMIN N D. Points, lines and walls in liquid-crystals, magnetic systems, and various ordered media- Kleman, M[J]. Am J Phys, 1984, 52(2): 188-189. [36] GLASBEY C A. An analysis of histogram-based thresholding algorithms[J]. Graph Mod Im Proc,1993, 55(6): 532-537. [37] LI C H, TAM P K S. An iterative algorithm for minimum cross entropy thresholding[J]. Patt Rec Lett, 1998, 19(8): 771-776. [38] LI C H, LEE C K. Minimum cross entropy thresholding[J]. Patt Rec, 1993, 26(4): 617-625. [39] REINHARD E. High dynamic range imaging, Computer vision: a reference guide[M]. Springer International Publishing, 2020: 1-6. [40] ZHANG T Y, SUEN C Y. A fast parallel algorithm for thinning digital patterns[J]. Commun ACM, 1984, 27(3): 236-239. [41] LEE T C, KASHYAP R L, CHU C N. Building skeleton models via 3-D medial surface axis thinning algorithms[J]. Graph Mod Im Proc, 1994, 56(6): 462-478. [42] WU K S, OTOO E, SUZUKI K. Optimizing two-pass connected-component labeling algorithms[J]. Patt Anal App, 2009, 12(2): 117-135. [43] WU K S, OTOO E, SHOSHANI A. Optimizing connected component labeling algorithms[J]. Med Imaging, 2005, 5747: 1965-1976. [44] FIORIO C, GUSTEDT J. Two linear time union-find strategies for image processing[J].Theor Comput.Sci,1996, 154(2): 165-181. [45] WILLIAM E. LORENSEN H E C. Marching cubes: a high resolution 3D surface construction algorithm[J]. ACM Siggraph Comput Graph, 1987, 21: 163-169. [46] ELLIOTT W D, BOARD J A. Fast Fourier transform accelerated fast multipole algorithm[J]. SIAM J Sci, Comput, 1996, 17(2): 398-415. [47] CHEN F, SUTER D. Using a fast multipole method to accelerate spline evaluations[J]. IEEE Comput Sci Eng, 1998, 5(3): 24-31. [48] CECKA C, DARVE E. Fourier-based fast multipole method for the helmholtz equation[J]. SIAM J Sci, Comput, 2013, 35(1): A79-A103. |