[1] SHIRASAKI Y, SUPRAN G J, BAWENDI M G, et al. Emergence of colloidal quantum-dot light-emitting technologies[J]. Nat Photonics, 2013, 7(1): 13. [2] TALAPIN DV, LEE J S, KOVALENKO M V, et al. Prospects of colloidal nanocrystals for electronic and optoelectronic applications[J]. Chem Rev, 2010, 110(1): 389-458. [3] PIETRYGA J M, PARK Y S, LIM J, et al. Spectroscopic and device aspects of nanocrystal quantum dots[J]. Chem Rev, 2016, 116(18): 10513-10622. [4] SHU Y, LIN X, QIN H, et al. Quantum dots for display applications[J]. Angew Chem Int Ed, 2020, 59(50): 22312-22323. [5] DAI X, ZHANG Z, JIN Y, et al. Solution-processed, high-performance light-emitting diodes based on quantum dots[J]. Nature, 2014, 515(7525): 96-99. [6] CHEN O, ZHAO J, CHAUHAN V P, et al. Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking[J]. Nat Mater, 2013, 12(5): 445-451. [7] KIM T H, CHO K S, LEE E K, et al. Full-colour quantum dot displays fabricated by transfer printing[J]. Nat Photonics, 2011, 5(3): 176-182. [8] QIAN L, ZHENG Y, XUE J, et al. Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures[J]. Nat Photonics, 2011, 5(9): 543-548. [9] BOURZAC K. Quantum dots go on display[J]. Nature, 2013, 493(7432): 283. [10] GAO A, YAN J, WANG Z, et al. Printable CsPbBr3 perovskite quantum dot ink for coffee ring-free fluorescent microarrays using inkjet printing[J]. Nanoscale, 2020, 12(4): 2569-2577. [11] SHI L, MENG L, JIANG F, et al. In situ inkjet printing strategy for fabricating perovskite quantum dot patterns[J]. Adv Funct Mater, 2019, 29(37): 1903648. [12] DAI X, DENG Y, PENG X, et al. Quantum-dot light-emitting diodes for large-area displays: towards the dawn of commercialization[J]. Adv Mater, 2017, 29(14): 1607022. [13] KIM L A, ANIKEEVA P O, COE-SULLIVAN S A, et al. Contact printing of quantum dot light-emitting devices[J]. Nano Lett, 2008, 8(12): 4513-4517. [14] NAM T W, KIM M, WANG Y, et al. Thermodynamic-driven polychromatic quantum dot patterning for light-emitting diodes beyond eye-limiting resolution[J]. Nat Commun, 2020, 11(1): 1-11. [15] PARK J S, KYHM J, KIM H H, et al. Alternative patterning process for realization of large-area, full-color, active quantum dot display[J]. Nano Lett, 2016, 16(11): 6946-6953. [16] STRICCOLI M. Photolithography based on nanocrystals[J]. Science, 2017, 357(6349): 353-354. [17] LUO C, XU C, LV L, et al. Review of recent advances in inorganic photoresists[J]. RSC Adv, 2020, 10(14): 8385-8395. [18] ASHBY P D, OLYNICK D L, OGLETREE D F, et al. Resist materials for extreme ultraviolet lithography: toward low-cost single-digit-nanometer patterning[J]. Adv Mater, 2015, 27(38): 5813-5819. [19] LU X Y, LUO H, WANG K, et al. CO2-based dual-tone resists for electron beam lithography[J]. Adv Funct Mater, 2020, 31(13): 2007417. [20] LI L, LIU X, PAL S, et al. Extreme ultraviolet resist materials for sub-7 nm patterning[J]. Chem Soc Rev, 2017, 46(16): 4855-4866. [21] SABEEH A, THAKUR Y, RUZYLLO J. Lift-off patterning of nano-crystalline quantum dot films[J]. ECS Trans, 2015, 69(12): 53. [22] JI T, JIN S, ZHANG H, et al. Full color quantum dot light-emitting diodes patterned by photolithography technology[J]. J Soc Inf Disp, 2018, 26(3): 121-127. [23] MEI W, ZHANG Z, ZHANG A, et al. High-resolution, full-color quantum dot light-emitting diode display fabricated via photolithography approach[J]. Nano Res, 2020, 13(9): 2485-2491. [24] MENTZEL T S, WANGER D D, RAY N, et al. Nanopatterned electrically conductive films of semiconductor nanocrystals[J]. Nano Lett, 2012, 12(8): 4404-4408. [25] MANFRINATO V R, WANGERD D, STRASFELD D B, et al. Controlled placement of colloidal quantum dots in sub-15 nm clusters[J]. Nanotechnology, 2013, 24(12): 125302. [26] XIE W, GOMES R, AUBERT T, et al. Nanoscale and single-dot patterning of colloidal quantum dots[J]. Nano Lett, 2015, 15(11): 7481-7487. [27] LAMBERT K, MOREELS I, THOURHOUT D V, et al. Quantum dot micropatterning on Si[J]. Langmuir, 2008, 24(11): 5961-5966. [28] QUALTIERI A, MARTIRADONNA L, STOMEO T, et al. Multicolored devices fabricated by direct lithography of colloidal nanocrystals[J]. Microelectron Eng, 2009, 86(4/6): 1127-1130. [29] LI X, KUNDALIYA D, TAN Z J, et al. Projection lithography patterned high-resolution quantum dots/thiol-ene photo-polymer pixels for color down conversion[J]. Opt Express, 2019, 27(21): 30864-30874. [30] JUN S, JANG E, PARK J, et al. Photopatterned semiconductor nanocrystals and their electroluminescence from hybrid light-emitting devices[J]. Langmuir, 2006, 22(6): 2407-2410. [31] NANDWANA V, SUBRAMANI C, YEH Y C, et al. Direct patterning of quantum dot nanostructures via electron beam lithography[J]. J Mater Chem, 2011, 21(42): 16859-16862. [32] DEMENT D B, QUAN M K, FERRY V E. Nanoscale patterning of colloidal nanocrystal films for nanophotonic applications using direct write electron beam lithography[J].ACS Appl Mater Interfaces, 2019, 11(16): 14970-14979. [33] DIELEMAN C D, DING W, WU L, et al. Universal direct patterning of colloidal quantum dots by (extreme)ultraviolet and electron beam lithography[J]. Nanoscale, 2020, 12(20): 11306-11316. [34] KIM W J, KIM S J, LEE K S, et al. Robust microstructures using UV photopatternable semiconductor nanocrystals[J]. Nano Lett, 2008, 8(10): 3262-3265. [35] WANG Y, FEDIN I, ZHANG H, et al. Direct optical lithography of functional inorganic nanomaterials[J]. Science, 2017, 357(6349): 385-388. [36] WANG Y, PAN J A, WU H, et al. Direct wavelength-selective optical and electron-beam lithography of functional inorganic nanomaterials[J]. ACS Nano, 2019, 13(12): 13917-13931. [37] CHO H, PAN J A, WU H, et al. Direct optical patterning of quantum dot light-emitting diodes via in situ ligand exchange[J]. Adv Mater, 2020, 32(46): 2003805. [38] PARK J J, PRABHAKARAN P, JANG K K, et al. Photopatternable quantum dots forming quasi-ordered arrays[J]. Nano Lett, 2010, 10(7): 2310-2317. [39] KO J, CHANG J H, JEONG B G, et al. Direct photolithographic patterning of colloidal quantum dots enabled by UV-crosslinkable and hole-transporting polymer ligands[J]. ACS Appl Mater Interfaces, 2020, 12(37): 42153-42160. [40] YANG J, HAHM D, KIM K, et al. High-resolution patterning of colloidal quantum dots via non-destructive, light-driven ligand crosslinking[J]. Nat Commun, 2020, 11(1): 1-9. [41] YANG J, CHOI M K, YANG U J, et al. Toward full-color electroluminescent quantum dot displays[J]. Nano Lett, 2020, 21(1): 26-33. [42] LIU Z, LIN C H, HYUN B R, et al. Micro-light-emitting diodes with quantum dots in display technology[J]. Light: Sci Appl, 2020, 9(1): 1-23. [43] WEN Z, ZHOU Z, LIU H, et al. Color revolution: towards ultra-wide color Gamut displays[J]. J Phys D: Appl Phys, 2021, 54(21): 213002. [44] YUE S. P-12.4: Quantum dot potoresist for color filter application[C]//SID Int Symp Dig Tech Pap, 2018, 49: 724-726. [45] 齐永莲, 王丹, 邱云, 等. 超高色域图案化量子点彩膜的研究[J]. 液晶与显示, 2017, 32(3): 169-176. QI Y L, WANG D, QIU Y, et al. Ultra-high color gamut and patterned color filter based on quantum dot photoresist[J]. Chinese J Liq Cryst Disp, 2017, 32(3): 169-176. [46] LEE E, KAN S, HOTZ C, et al. 67-2: Invited Paper: Ambient processing of quantum dot photoresist for emissive displays[C]//SID Int Symp Dig Tech Pap, 2017, 48(1): 984-987. [47] ISHIDA T, NAKANISHI Y, IZUMI M, et al. How will quantum dots enable next-gen display technologies?[J]. Inf Disp, 2020, 36(6): 14-18. |