Chinese Journal of Applied Chemistry ›› 2024, Vol. 41 ›› Issue (9): 1333-1341.DOI: 10.19894/j.issn.1000-0518.240112
• Full Papers • Previous Articles Next Articles
Zhao-Hui HAN, Liang MENG, Chen QIN, Hai-Liang CAO(), Ying HOU
Received:
2024-04-02
Accepted:
2024-07-12
Published:
2024-09-01
Online:
2024-10-09
Contact:
Hai-Liang CAO
About author:
caohailiang@tyut.edu.cnSupported by:
CLC Number:
Zhao-Hui HAN, Liang MENG, Chen QIN, Hai-Liang CAO, Ying HOU. Controllable Construction of Porous Carbon Microspheres for Sodium-Ion Batteries[J]. Chinese Journal of Applied Chemistry, 2024, 41(9): 1333-1341.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.240112
Fig.2 (A) XRD patterns, (B) N2 adsorption/desorption isotherms, (C) pore size distributions, (D) Raman spectra and (G) XPS full spectra of S-HC and PCGS, Raman spectra fitting bands of (E) S-HC and (F) PCGS, and C1s spectra of (H) S-HC and (I) PCGS.
Sample | d002 | ID3/IG | Lc/nm | La/nm | Ai/nm2 | SBET/(m2 g-1) | Pore volume/(cm3 g-1) |
---|---|---|---|---|---|---|---|
S-HC | 0.39 | 0.49 | 1.01 | 3.00 | 32.31 | 572.60 | 0.22 |
PCGS | 0.37 | 0.46 | 1.06 | 3.46 | 46.27 | 54.10 | 0.02 |
Table 1 Structural parameters of S-HC and PCGS
Sample | d002 | ID3/IG | Lc/nm | La/nm | Ai/nm2 | SBET/(m2 g-1) | Pore volume/(cm3 g-1) |
---|---|---|---|---|---|---|---|
S-HC | 0.39 | 0.49 | 1.01 | 3.00 | 32.31 | 572.60 | 0.22 |
PCGS | 0.37 | 0.46 | 1.06 | 3.46 | 46.27 | 54.10 | 0.02 |
Fig.3 Cyclic voltammetry curves of (A) S-HC and (B) PCGS; (C) Initial charge/discharge curres of S-HC and PCGS at 0.1 C; (D) Specific capacities contributed from the plateau and slope region; (E) Rate performance and (F) cycle performance at 0.2 C of S-HC and PCGS
Fig.4 (A) Cyclic voltammetry curves at various scan rates; (B) Fitted curves corresponding to P and S peaks; (C) Capacity contribution at 0.3 mV/s scan rate; (D) Capacitive and diffusion-controlled contribution ratio at various scan rates of PCGS
1 | ZHANG H, GAO Y, LIU X, et al. Long-cycle-life cathode materials for sodium-ion batteries toward large-scale energy storage systems[J]. Adv Energy Mater, 2023, 13(23): 2300149. |
2 | LIANG X, HWANG J, SUN Y. Practical cathodes for sodium-ion batteries: who will take the crown?[J]. Adv Energy Mater, 2023, 13(37): 2301975. |
3 | PEI L, YANG L, CAO H, et al. Cost-effective and renewable paper derived hard carbon microfibers as superior anode for sodium-ion batteries[J]. Electrochim Acta, 2020, 364: 137313. |
4 | 吴芮瑶, 欧阳丹丹, 殷娇, 等. 钠离子电池用生物质基硬碳的研究进展[J]. 应用化学, 2024, 41(4): 496-511. |
WU R Y, OUYANG D D, YIN J, et al. Research progress of biomass-based hard carbon anodes for sodium-ion storage[J]. Chin J Appl Chem, 2024, 41(4): 496-511. | |
5 | MA P, FANG D, LIU Y, et al. MXene-based materials for electrochemical sodium-ion storage[J]. Adv Sci, 2021, 8(11): 2003185. |
6 | YAN L, WANG J, REN Q, et al. In-situ graphene-coated carbon microsphere as high initial coulombic efficiency anode for superior Na/K-ion full cell[J]. Chem Eng J, 2022, 432: 133257. |
7 | SUN N, ZHU Q, ANASORI B, et al. MXene-bonded flexible hard carbon film as anode for stable Na/K-ion storage[J]. Adv Funct Mater, 2019, 29(51): 1906282. |
8 | 曹海亮, 杨良滔, 赵敏, 等. 硬炭微球/MXene柔性薄膜负极应用于高性能钠离子存储[J]. 新型炭材料, 2022, 37(6): 1154-1162. |
CAO H L, YANG L T, ZHAO M, et al. A flexible hard carbon microsphere/MXene film as a high-performance anode for sodium-ion storage[J]. New Carbon Mater, 2022, 37(6): 1154-1162. | |
9 | HUMMERS W S J R, OFFEMAN R E. Preparation of graphitic oxide[J]. J Am Chem Soc, 1958, 80(6): 1339-1339. |
10 | LU B, ZHANG C, DENG D, et al. Synthesis of low-cost and high-performance dual-atom doped carbon-based materials with a simple green route as anodes for sodium-ion batteries[J]. Molecules, 2023, 28(21): 7314. |
11 | KAPTAY G. The chemical (not mechanical) paradigm of thermodynamics of colloid and interface science[J]. Adv Colloid Interface, 2018, 256: 163-192. |
12 | ZHANG H, ZHANG W, HUANG F. Graphene inducing graphitization: towards a hard carbon anode with ultrahigh initial coulombic efficiency for sodium storage[J]. Chem Eng J, 2022, 434: 134503. |
13 | HUANG S, YANG D, QIU X, et al. Boosting surface-dominated sodium storage of carbon anode enabled by coupling graphene nanodomains, nitrogen-doping, and nanoarchitecture engineering[J]. Adv Funct Mater, 2022, 32(33): 2203279. |
14 | HUANG H, XU R, FENG Y, et al. Sodium/potassium-ion batteries: boosting the rate capability and cycle life by combining morphology, defect and structure engineering[J]. Adv Mater, 2020, 32(8): 1904320. |
15 | YAN Y, YIN Y, GUO Y, et al. A sandwich-like hierarchically porous carbon/graphene composite as a high-performance anode material for sodium-ion batteries[J]. Adv Energy Mater, 2014, 4(8): 1301584. |
16 | CHU Y, ZHANG J, ZHANG Y, et al. Reconfiguring hard carbons with emerging sodium-ion batteries: a perspective[J]. Adv Mater, 2023, 35(31): 2212186. |
17 | XU J, CHEN B, HU B, et al. 3D connected porous structure hard carbon derived from paulownia xylem for high rate performance sodium ion battery anode[J]. J Energy Storage, 2024, 81: 110306. |
18 | LIU T, LI X. Biomass-derived nanostructured porous carbons for sodium ion batteries: a review[J]. Mater Technol, 2019, 34(4): 232-245. |
19 | JIN Q, WANG K, LI H, et al. Tuning microstructures of hard carbon for high capacity and rate sodium storage[J]. Chem Eng J, 2021, 417: 128104. |
20 | SONG M, SONG Q, ZHANG T, et al. Growing curly graphene layer boosts hard carbon with superior sodium-ion storage[J]. Nano Res, 2023, 16: 9299-9309. |
21 | 杨汉西, 雷鸣, 李升宪, 等. 炭材料作为贮锂负极的研究[J]. 应用化学, 1993, 10(1): 113-115. |
YANG H X, LEI M, LI S X, et al. Preliminary investigation of acetylene black as negative electrode for lithium battery[J]. Chin J Appl Chem, 1993, 10(1): 113-115. | |
22 | SONG M, YI Z, XU R, et al. Towards enhanced sodium storage of hard carbon anodes: regulating the oxygen content in precursor by low-temperature hydrogen reduction[J]. Energy Storage Mater, 2022, 51: 620-629. |
23 | 左自成, 李玉良. 石墨炔在锂/钠离子电池负极中的应用[J]. 应用化学, 2018, 35(9): 1057-1066. |
ZUO Z C, LI Y L. Applications of graphdiyne in Li+/Na+ battery anodes[J]. Chin J Appl Chem, 2018, 35(9): 1057-1066. | |
24 | LI X, CHEN Z, LI A, et al. Three-dimensional hierarchical porous structures constructed by two-stage MXene-wrapped Si nanoparticles for Li-ion batteries[J]. ACS Appl Mater Interfaces, 2020, 12(43): 48718-48728. |
25 | 王福洋, 宋伟明, 孙立, 等. 多孔纳米立方FeSe2/石墨烯复合材料的可控构建及在钠离子电池中的应用[J]. 应用化学, 2022, 39(5): 779-786. |
WANG F Y, SONG W M, SUN L, et al. Controllable construction of porous nanocube FeSe2/graphene composite for efficient Na-ion storage[J]. Chin J Appl Chem, 2022, 39(5): 779-786. | |
26 | AUGUSTYN V, COME J, LOWE M, et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance[J]. Nat Mater, 2013, 12(6): 518-522. |
27 | FERRARI A, ROBERTSON J. Interpretation of Raman spectra of disordered and amorphous carbon[J]. Phys Rev B, 2000, 61(20): 14095-14107. |
28 | REDDY M, HELEN M, GROSS A, et al. Insight into sodium insertion and the storage mechanism in hard carbon[J]. ACS Energy Lett, 2018, 3(12): 2851-2857. |
29 | ZHANG B, GHIMBEU C, LABERTY C, et al. Correlation between microstructure and Na storage behavior in hard carbon[J]. Adv Energy Mater, 2016, 6(1): 1501588. |
30 | WU J, XU H, ZHANG J. Raman spectroscopy of graphene[J]. Acta Chim Sin, 2014, 72(3): 301. |
31 | HE X, LAI W, LIANG Y, et al. Achieving all-plateau and high-capacity sodium insertion in topological graphitized carbon[J]. Adv Mater, 2023, 35(40): 2302613. |
[1] | Guo-Ying GUO, Mo-Xuan ZHAO, Wen-Ting LIANG, Tao GONG, Chuan DONG. Preparation and Anti‑Cancer Properties of Gold Nanosphere‑Graphene Oxide Nanodrug Carriers [J]. Chinese Journal of Applied Chemistry, 2024, 41(7): 976-986. |
[2] | Lei XU, Long-Yang WANG, Li TAO, Hao-Nan ZHANG, Xin-Wang JIA, Hou-Zhao WAN, Jun ZHANG, Hao WANG. Long-Term Aqueous Zinc-Ion Batteries without Dendrites Protected by Nitrogen Heterocyclic Imidazole Ionic Liquid [J]. Chinese Journal of Applied Chemistry, 2024, 41(7): 998-1009. |
[3] | Dong-Yu ZHANG, Chun-Li WANG, Yong CHENG, Li-Min WANG. Research Progress of Antimony⁃Based Anode for Sodium/Potassium Ion Batteries: Failure Analysis and Solutions [J]. Chinese Journal of Applied Chemistry, 2024, 41(5): 616-636. |
[4] | Yan-Li ZU, Wan-Lu LI, Jia LIU, Shan LIN, Sen LI, Chun-Ying HE. Third‑Order Nonlinear Optical Properties of Molybdenum Diselenide/Graphene Composite [J]. Chinese Journal of Applied Chemistry, 2024, 41(5): 659-667. |
[5] | Hou-Ran WU, Chun-Ming HOU, Ti-Gang DUAN, Li MA, Hai-Bing ZHANG, Jin-Tao WANG. Electrochemical Properties of Al-Ga-In-Sn-Si Alloy Anodes and Seawater Dissolved Oxygen Batteries [J]. Chinese Journal of Applied Chemistry, 2024, 41(5): 703-711. |
[6] | Rui-Yao WU, Dan-Dan OUYANG, Li-Li AI, An-Jie LIU, Hui ZHU, Xiao-Xin GAO, Jiao YIN. Research Progress of Biomass-Based Hard Carbon Anodes for Sodium-Ion Storage [J]. Chinese Journal of Applied Chemistry, 2024, 41(4): 496-511. |
[7] | Ting-Ting GU, Ke ZHANG, Xin-Zhou ZHANG, Yang LIU, Wei-Cai SUN, Ai-Dong TAN, Jian-Guo LIU. Research Progress on Anodic Titanium‑Based Gas Diffusion Layer in Proton Exchange Membrane Electrolysis Cell [J]. Chinese Journal of Applied Chemistry, 2024, 41(3): 365-376. |
[8] | Yue ZHANG, Rui LIANG, Can-Nan ZHAO, Chun-Mei LI. Construction of Graphene Oxide-DNA Nanoprobe for Adenosine 5-Triphosphate Detection and Drug Delivery [J]. Chinese Journal of Applied Chemistry, 2024, 41(1): 118-127. |
[9] | Ling-Bo LIU, Shuang LI, Kang-Bing WU. Laser-Induced Graphene-Based Integrated Arrays for the Determination of Trimetazidine [J]. Chinese Journal of Applied Chemistry, 2024, 41(1): 147-155. |
[10] | Bing-Shuai CHEN, Hai-Tao ZHUO, Shu HUANG, Shao-Jun CHEN. Advances of High-Performance Polymer Binders for Silicon-Based Anodes [J]. Chinese Journal of Applied Chemistry, 2023, 40(5): 625-639. |
[11] | Fang-Zheng HU, Xing GAO, Lei LIU, Tian-Heng YUAN, Ning CAO, Kai LI, Ya-Tao WANG, Jian-Hua LI, Hui-Qin LIAN, Xiao-Dong WANG, Xiu-Guo CUI. Advances in Black Phosphorus Anode Advantages and Optimization in Li-ion Battery Anodes [J]. Chinese Journal of Applied Chemistry, 2023, 40(4): 571-582. |
[12] | Wen-Jun SHI, Zhong-Hui SUN, Zhong-Qian SONG, XU-Jia NAN, Dong-Xue HAN, Li NIU. Research Progress of Layered Transition Metal Oxides Cathode Materials for Sodium-ion Batteries [J]. Chinese Journal of Applied Chemistry, 2023, 40(4): 583-596. |
[13] | Xue-Jian SHI, Wan-Qiang LIU, Chun-Li WANG, Yong CHENG, Li-Min WANG. Research Progress of Sb-based Anode Materials for Potassium Ion Batteries [J]. Chinese Journal of Applied Chemistry, 2023, 40(2): 210-228. |
[14] | Wei-Na HAO, Chao ZHOU, Hai-Ping DI, Lin-Hong DENG. Preparation and Characterization of Graphene Oxide-Hyaluronic Acid-Polyethylene Glycol Composite Supramolecular Hydrogel [J]. Chinese Journal of Applied Chemistry, 2023, 40(12): 1672-1681. |
[15] | Fang XIA, Zi-Ying XU, He WANG, Yu-Fang HE. Graphene Oxide Characterization Based on Bibliometrics [J]. Chinese Journal of Applied Chemistry, 2023, 40(10): 1448-1455. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||