Chinese Journal of Applied Chemistry ›› 2024, Vol. 41 ›› Issue (9): 1324-1332.DOI: 10.19894/j.issn.1000-0518.240090
• Full Papers • Previous Articles Next Articles
Zhen-jian JIA1,2(), Xi HAN3, Jie ZHANG3
Received:
2024-03-22
Accepted:
2024-07-16
Published:
2024-09-01
Online:
2024-10-09
Contact:
Zhen-jian JIA
About author:
jiazhenjian2023@163.comSupported by:
CLC Number:
Zhen-jian JIA, Xi HAN, Jie ZHANG. Preparation and Photocatalytic Performance of Ruthenium Dioxide/Titanium Dioxide Composite Catalyst[J]. Chinese Journal of Applied Chemistry, 2024, 41(9): 1324-1332.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.240090
Reaction time/min | Degradation rate/% | ||
---|---|---|---|
Light intensity=0 | Light intensity=2.04 mW/cm2 | Light intensity=4.23 mW/cm2 | |
5 | 0.54 | 0.94 | 1.28 |
10 | 1.28 | 2.75 | 3.45 |
15 | 2.64 | 4.97 | 5.78 |
20 | 5.12 | 7.44 | 9.67 |
25 | 7.07 | 10.06 | 12.74 |
30 | 10.59 | 13.95 | 15.69 |
35 | 18.75 | 26.46 | 29.74 |
40 | 20.31 | 37.06 | 41.97 |
45 | 23.67 | 52.66 | 58.44 |
55 | 25.04 | 60.15 | 69.15 |
60 | 27.69 | 65.43 | 89.46 |
Table 1 Influence of light intensity on photocatalytic effect
Reaction time/min | Degradation rate/% | ||
---|---|---|---|
Light intensity=0 | Light intensity=2.04 mW/cm2 | Light intensity=4.23 mW/cm2 | |
5 | 0.54 | 0.94 | 1.28 |
10 | 1.28 | 2.75 | 3.45 |
15 | 2.64 | 4.97 | 5.78 |
20 | 5.12 | 7.44 | 9.67 |
25 | 7.07 | 10.06 | 12.74 |
30 | 10.59 | 13.95 | 15.69 |
35 | 18.75 | 26.46 | 29.74 |
40 | 20.31 | 37.06 | 41.97 |
45 | 23.67 | 52.66 | 58.44 |
55 | 25.04 | 60.15 | 69.15 |
60 | 27.69 | 65.43 | 89.46 |
Reaction time/min | Degradation rate/% | ||
---|---|---|---|
pH=2 | pH=7 | pH=11 | |
5 | 5.98 | 3.67 | 1.75 |
10 | 14.76 | 11.44 | 8.96 |
15 | 19.73 | 16.75 | 13.74 |
20 | 27.86 | 22.34 | 19.31 |
25 | 36.74 | 31.38 | 27.86 |
30 | 43.97 | 39.84 | 35.47 |
35 | 52.47 | 46.72 | 42.36 |
40 | 68.47 | 59.31 | 51.63 |
45 | 72.16 | 66.31 | 62.75 |
55 | 81.82 | 78.29 | 76.33 |
60 | 91.47 | 88.31 | 82.64 |
Table 2 Influence of pH environmental conditions on photocatalysis
Reaction time/min | Degradation rate/% | ||
---|---|---|---|
pH=2 | pH=7 | pH=11 | |
5 | 5.98 | 3.67 | 1.75 |
10 | 14.76 | 11.44 | 8.96 |
15 | 19.73 | 16.75 | 13.74 |
20 | 27.86 | 22.34 | 19.31 |
25 | 36.74 | 31.38 | 27.86 |
30 | 43.97 | 39.84 | 35.47 |
35 | 52.47 | 46.72 | 42.36 |
40 | 68.47 | 59.31 | 51.63 |
45 | 72.16 | 66.31 | 62.75 |
55 | 81.82 | 78.29 | 76.33 |
60 | 91.47 | 88.31 | 82.64 |
Reaction time /min | Degradation rate/% | ||
---|---|---|---|
350 ℃ | 550 ℃ | 750 ℃ | |
5 | 20.48 | 25.49 | 9.21 |
10 | 35.76 | 46.37 | 21.37 |
15 | 44.97 | 52.76 | 24.15 |
20 | 49.38 | 59.34 | 30.72 |
25 | 52.91 | 64.79 | 33.81 |
30 | 59.73 | 70.31 | 35.19 |
35 | 64.92 | 74.82 | 38.96 |
40 | 68.33 | 81.54 | 40.13 |
45 | 70.15 | 87.61 | 41.55 |
55 | 72.34 | 92.47 | 46.71 |
60 | 86.39 | 96.73 | 50.17 |
Table 3 Influence of temperature environment on photocatalytic effect
Reaction time /min | Degradation rate/% | ||
---|---|---|---|
350 ℃ | 550 ℃ | 750 ℃ | |
5 | 20.48 | 25.49 | 9.21 |
10 | 35.76 | 46.37 | 21.37 |
15 | 44.97 | 52.76 | 24.15 |
20 | 49.38 | 59.34 | 30.72 |
25 | 52.91 | 64.79 | 33.81 |
30 | 59.73 | 70.31 | 35.19 |
35 | 64.92 | 74.82 | 38.96 |
40 | 68.33 | 81.54 | 40.13 |
45 | 70.15 | 87.61 | 41.55 |
55 | 72.34 | 92.47 | 46.71 |
60 | 86.39 | 96.73 | 50.17 |
1 | 孙靖昆. 重点流域水环境污染物排放总容量预测仿真[J]. 计算机仿真, 2021, 38(3): 410-414. |
SUN J K. Prediction and simulation of total discharge capacity of water environmental pollutants in key river basins[J]. Computer Simulation, 2021, 38(3): 410-414. | |
2 | 张宁, 冯靖书, 杨倩倩, 等. 一维CdS-Co9S8复合材料的制备及光催化产氢性能[J]. 中国粉体技术, 2021, 27(3): 73-79. |
ZHANG N, FENG J S, YANG Q Q, et al. Synthesis of 1D CdS-Co9S8 composites for photocatalytic hydrogen production[J]. China Powder Sci Technol, 2021, 27(3): 73-79. | |
3 | 陈亚杰, 邵亚云, 程浩艳. 合成条件对纳米TiO2材料光催化性能的影响[J]. 兵器材料科学与工程, 2022, 45(2): 43-48. |
CHEN Y J, SHAO Y Y, CHENG H Y. Effect of synthesis conditions on the photocatalytic performance of nano TiO2 materials[J]. Ordnan Mater Sci Eng, 2022, 45(2): 43-48. | |
4 | 林博文, 徐亦冬, 余德密. MgAl-LDHs/TiO2复合光催化剂的制备及光催化性能[J]. 材料导报, 2023, 37(19): 40-45. |
LIN B W, XU Y D, YU D M. Preparation and photocatalytic performance of MgAl LDHs/TiO2 composite photocatalysts[J]. Mater Rep, 2023, 37(19): 40-45. | |
5 | 王蕾, 宋欣怡, 童海健, 等. 光还原法制备花状Bi/CuS可见光催化剂及其性能研究[J]. 稀有金属, 2023, 47(1): 177-185. |
WANG L, SONG X Y, TONG H J, et al. Preparation of flower-like Bi/CuS photocatalyst by photo-reduction method[J]. Chin J Rare Met, 2023, 47(1): 177-185. | |
6 | 杜英和, 李文涛, 李家科, 等. rGO/BiVO4复合光催化剂的制备与性能研究[J]. 陶瓷学报, 2023, 44(3): 556-562. |
DU Y H, LI W T, LI J K, et al. Preparation and photocatalytic performance of rGO/BiVO4 composite photocatalyst[J]. J Ceram, 2023, 44(3): 556-562. | |
7 | 郭春芳. 纳米NiO/ZrO2复合光催化剂的制备及性能[J]. 印染助剂, 2022, 39(3): 31-34. |
GUO C F. Preparation and characteristics of the nano-sized NiO/ZrO2 photocatalyst[J]. Textile Auxiliaries, 2022, 39(3): 31-34. | |
8 | MA X, CHENG H. Facet-dependent photocatalytic H2O2 production of single phase Ag3PO4 and Z-scheme Ag/ZnFe2O4-Ag-Ag3PO4 composites[J]. Chem Eng J, 2022, 429(3): 132373.1-132373.18. |
9 | 樊婷玥, 任煜, 赵紫瑶, 等. Ag6Si2O7-TiO2/PP复合光催化材料的制备及其抗菌性能[J]. 复合材料学报, 2022, 39(8): 3915-3921. |
FAN T Y, REN Y, ZHAO Z Y, et al. Preparation and antibacterial properties of Ag6Si2O7-TiO2/PP composite photocatalytic material[J]. Acta Mater Compos Sin, 2022, 39(8): 3915-3921. | |
10 | YU J, ZENG Y, JIN Q. Hydrogenation of CO2 to methane over a Ru/RuTiO2 surface: a DFT investigation into the significant role of the RuO2 overlayer[J]. ACS Catal, 2022, 12(23): 14654-14666. |
11 | WANG X, DING H, LV G, et al. Fabrication of superhydrophilic self-cleaning SiO2-TiO2 coating and its photocatalytic performance[J]. Ceram Int, 2022, 48(14): 20033-20040. |
12 | 曹英寒, 武鹏程, 吴可量, 等. Co-CNNS/CdS/CoP复合催化剂的制备及光催化产氢性能研究[J]. 化学研究与应用, 2023, 35(5): 1132-1138. |
CAO Y H, WU P C, WU K L, et al. Preparation of Co-CNNS/CdS/CoP composite catalyst and photocatalytic performance for hydrogen production[J]. Chem Res Appl, 2023, 35(5): 1132-1138. | |
13 | LI M, ZHANG J, WANG L, et al. Direct Z-scheme oxygen-vacancy-rich TiO2/Ta3N5 heterojunction for degradation of ciprofloxacin under visible light: degradation pathways and mechanism insight[J]. Appl Surface Sci, 2022, 583: 152516. |
14 | HOU C, LIU H, JIAN Y, et al. Preparation of TiO2/TiOF2/{2 2 2}Ag3PO4 and its photocatalytic degradation of tetracycline hydrochloride wastewater[J]. Mater Lett, 2022, 309: 131410. |
15 | 任小蕾, 郑楠, 王宇, 等. In2O3/ZnIn2S4复合光催化剂的制备及其降解甲基橙性能[J]. 大连工业大学学报, 2023, 42(3): 190-194. |
REN X L, ZHENG N, WANG Y, et al. Preparation of In2O3/ZnIn2S4 composite photocatalysts for degradation of methyl orange[J]. J Dalian Polytech Univ, 2023, 42(3): 190-194. | |
16 | XIE T, ZHANG Z Y, ZHENG H Y, et al. Enhanced photothermal catalytic performance of dry reforming of methane over Ni/mesoporous TiO2 composite catalyst[J]. Chem Eng J, 2022, 429(3): 132507. |
17 | 曹德路, 文斯捷, 张梦朝, 等. BiOCl/BiOI复合光催化剂的制备及其降解四环素的性能研究[J]. 应用化工, 2022, 51(10): 2869-2874. |
CAO D L, WEN S J, ZHANG M Z, et al. Preparation of BiOCl/BiOI composite photocatalyst and its performance in the degradation of tetracycline[J]. Appl Chem Ind, 2022, 51(10): 2869-2874. | |
18 | 周颖, 唐爱坤, 倪强, 等. 不同载体Pt基整体式催化剂对氢气低温反应性能的影响[J]. 江苏大学学报(自然科学版), 2023, 44(2): 207-212, 220. |
ZHOU Y, TANG A K, NI Q, et al. Effect of Pt-based monolithic catalysts with different support on low temperature reaction performance of hydrogen[J]. J Jiangsu Univ(Nat Sci Ed), 2023, 44(2): 207-212, 220. | |
19 | HU T, MU Y, CHEN Y, et al. Combined effects of nanoparticle and stretch-induced orientation on crystal structure and properties of UHMWPE/TiO2 composite microporous membranes[J]. Polym Compos, 2023, 44(6): 3580-3593. |
[1] | Zhen-Jian JIA, Xi HAN, Jie ZHANG. Preparation and Photocatalytic Performance of Bismuth Modified TiO2 Photocatalyst [J]. Chinese Journal of Applied Chemistry, 2024, 41(8): 1116-1125. |
[2] | Ying-Wei LI, Ji HAN, Bu-Yuan GUAN. Research Progress on the Synthesis and Application of Two-Dimensional Mesoporous Materials [J]. Chinese Journal of Applied Chemistry, 2024, 41(6): 767-782. |
[3] | Bing-Jie WAN, Xiao-Xue LIU, Lin-Guang QI, Chang-Chao JIA, Jian LIU. Research Progress of TiO2-Based Photocatalytic CO2 Reduction [J]. Chinese Journal of Applied Chemistry, 2024, 41(5): 637-658. |
[4] | Yu-Xuan LI, Yu-Hao ZHAO, Yu-Ze DAI, Min JIANG, Ying ZHANG, Guang-Yuan ZHOU. Preparation and Characterization of Poly(ethylene 2,5-furandicarboxylate)/TiO2 Nanoparticles/ Diatomaceous Earth Composites [J]. Chinese Journal of Applied Chemistry, 2023, 40(9): 1277-1287. |
[5] | Xue-Bo LEI, Hui-Jing LIU, He-Yu DING, Guo-Dong SHEN, Run-Jun SUN. Research Progress on Photocatalysts for Degradation of Organic Pollutants in Printing and Dyeing Wastewater [J]. Chinese Journal of Applied Chemistry, 2023, 40(5): 681-696. |
[6] | Bo XIONG, Tai-Hua LI, Wu-Ping ZHOU, Chang-Yu LIU, Xiao-Long XU. Preparation of Cu2O/CuO-g-C3N4 Adsorbent by One-step Thermal Polymerization and Adsorption Properties for Methyl Orange [J]. Chinese Journal of Applied Chemistry, 2023, 40(3): 420-429. |
[7] | Guo-Qing CAI, Jing-Ru DONG, Jun-Ming MO. Green Synthesis and Antibacterial Activity of N‑Benzyl Sulfoximines [J]. Chinese Journal of Applied Chemistry, 2023, 40(12): 1693-1699. |
[8] | Feng WEI, Hai-Dong XING, Zi-Yuan XIU, De-Feng XING, Xiao-Jun HAN. Fabrication of BiOX-Based Photocatalysts and Their Applications in Energy Conversion [J]. Chinese Journal of Applied Chemistry, 2023, 40(11): 1518-1530. |
[9] | Lin-Jie SHANG, Jiang LIU, Ya-Qian LAN. Covalent Organic Framework Materials for Photo/ Electrocatalytic Carbon Dioxide Reduction [J]. Chinese Journal of Applied Chemistry, 2022, 39(4): 559-584. |
[10] | Jia-He WANG, Da-Yong LIU, Wei LIU, Lin WANG, Biao DONG. Research Progress on Photocatalytic Antibacterial Application of TiO2 Nano Materials [J]. Chinese Journal of Applied Chemistry, 2022, 39(4): 629-646. |
[11] | Hui LU, Jiang LI, Li-Hua WANG, Ying ZHU, Jing CHEN. Researsh Progress of Photocatalytic Applications of Atomically Precise Coinage Metal Nanoclusters [J]. Chinese Journal of Applied Chemistry, 2022, 39(11): 1652-1664. |
[12] | Xiang-Zhi YE, Yun-Shui DENG, Yuan LIU, Yong-Liu ZHOU, Jian-Xiong HE, Chun-Rong XIONG. Glass Sphere Supported Amorphous Organotitanium Polymer to Improve the Turnover Frequency in Photocatalytic Reduction of CO2 [J]. Chinese Journal of Applied Chemistry, 2022, 39(10): 1554-1563. |
[13] | Yu-Feng ZHOU, Chuan-Wei ZHOU, Tong-Ze HU, Zhan-Peng DUAN, Hao-Tong WANG, Shu-Yun SHI. Synthesis of Fe/V‑Sb2O3 Composites and UV‑light Catalytic Degradation of Pharmaceutical Wastewater [J]. Chinese Journal of Applied Chemistry, 2022, 39(10): 1572-1578. |
[14] | Ying-Zi LI, Ting LIU, Si-Qi WU, Xuan FANG, Jing GAO, Shi TANG. Metallaphotoredox⁃Catalyzed O⁃Arylation of Serine [J]. Chinese Journal of Applied Chemistry, 2022, 39(10): 1610-1616. |
[15] | YANG Yu-Ping, XU Shao-Hong, MA Guo-Yang, JIAO Li-Ming, SUN Li-Ping, XIA Ran. Synthesis of 5-Deuterated Ribavirin Derivative [J]. Chinese Journal of Applied Chemistry, 2021, 38(8): 911-916. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||