Chinese Journal of Applied Chemistry ›› 2023, Vol. 40 ›› Issue (6): 769-788.DOI: 10.19894/j.issn.1000-0518.220388
• Review • Next Articles
Yi-Cheng ZHANG1, Fei ZHA1(), Xiao-Hua TANG1, Yue CHANG1,2, Hai-Feng TIAN1, Xiao-Jun GUO1
Received:
2022-11-28
Accepted:
2023-04-16
Published:
2023-06-01
Online:
2023-06-27
Contact:
Fei ZHA
About author:
zhafei@nwnu.edu.cnSupported by:
CLC Number:
Yi-Cheng ZHANG, Fei ZHA, Xiao-Hua TANG, Yue CHANG, Hai-Feng TIAN, Xiao-Jun GUO. Research Progress of Heterogeneous Catalytic Preparation of Organic Peroxides[J]. Chinese Journal of Applied Chemistry, 2023, 40(6): 769-788.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.220388
Catalyst | Preparation method | Conversion of cumene/% | Selectivity of CHP/% | Yield of CHP/% | Ref. |
---|---|---|---|---|---|
CaO | Roasting method | 60.1 | 55.9 | 33.6 | [ |
MgO | Roasting method | 42.1 | 60.2 | 25.3 | [ |
SrO | Roasting method | 32.5 | 65.1 | 21.2 | [ |
Nano MgO | Hydrothermal method | 36.5 | 97.3 | 35.5 | [ |
CuO | Goods | 27.9 | 91.6 | 25.5 | [ |
Nano CuO | Room-temperature solid-phase method | 37.8 | 92.9 | 35.1 | [ |
Nano CuO | Hydrothermal method | 44.2 | 93.2 | 41.2 | [ |
Nano CuO | Ultrafiltration surface contact method | 35.2 | 92.9 | 32.7 | [ |
CuO | Goods | 67.1 | 95.1 | 63.8 | [ |
Nano TiO2 | Goods | 25.0 | 62.0 | 15.5 | [ |
CuO-MnO2-TiO2 | Coprecipitation-ultrasonic Assisted method | 56.7 | 66.6 | 37.8 | [ |
CuO-ZnO-TiO2 | Coprecipitation-ultrasonic Assisted method | 37.2 | 94.5 | 35.2 | [ |
Fe-O/ZrO2 | Sol-gel methods | - | - | 10.0 | [ |
Fe-O/TiO2 | Sol-gel methods | - | - | 4.0 | [ |
Fe-O/Al2O3 | Sol-gel methods | - | - | 5.0 | [ |
NiO-Al2O3 | Goods | - | - | 58.5 | [ |
NiO-MgO | Roasting method | - | 95.6 | - | [ |
NiO-CaO | Roasting method | - | 90.4 | - | [ |
NiO-SrO | Roasting method | - | 90.7 | - | [ |
NiO-BaO | Roasting method | - | 90.0 | - | [ |
Table 1 Application of metal oxides in the oxidation of cumene
Catalyst | Preparation method | Conversion of cumene/% | Selectivity of CHP/% | Yield of CHP/% | Ref. |
---|---|---|---|---|---|
CaO | Roasting method | 60.1 | 55.9 | 33.6 | [ |
MgO | Roasting method | 42.1 | 60.2 | 25.3 | [ |
SrO | Roasting method | 32.5 | 65.1 | 21.2 | [ |
Nano MgO | Hydrothermal method | 36.5 | 97.3 | 35.5 | [ |
CuO | Goods | 27.9 | 91.6 | 25.5 | [ |
Nano CuO | Room-temperature solid-phase method | 37.8 | 92.9 | 35.1 | [ |
Nano CuO | Hydrothermal method | 44.2 | 93.2 | 41.2 | [ |
Nano CuO | Ultrafiltration surface contact method | 35.2 | 92.9 | 32.7 | [ |
CuO | Goods | 67.1 | 95.1 | 63.8 | [ |
Nano TiO2 | Goods | 25.0 | 62.0 | 15.5 | [ |
CuO-MnO2-TiO2 | Coprecipitation-ultrasonic Assisted method | 56.7 | 66.6 | 37.8 | [ |
CuO-ZnO-TiO2 | Coprecipitation-ultrasonic Assisted method | 37.2 | 94.5 | 35.2 | [ |
Fe-O/ZrO2 | Sol-gel methods | - | - | 10.0 | [ |
Fe-O/TiO2 | Sol-gel methods | - | - | 4.0 | [ |
Fe-O/Al2O3 | Sol-gel methods | - | - | 5.0 | [ |
NiO-Al2O3 | Goods | - | - | 58.5 | [ |
NiO-MgO | Roasting method | - | 95.6 | - | [ |
NiO-CaO | Roasting method | - | 90.4 | - | [ |
NiO-SrO | Roasting method | - | 90.7 | - | [ |
NiO-BaO | Roasting method | - | 90.0 | - | [ |
1 | 翁干友, 史建公. 有机过氧化物的性质、分类及用途[J]. 石化技术, 2001(1): 63-66. |
WENG G Y, SHI J G. The properties, classification and applications of organic peroxide[J]. Petrochem Ind Technol, 2001(1): 63-66. | |
2 | 马兵, 潘帅, 舒鑫琳. 一种以双氧水为原料直接制备有机过氧化物的在线全连续流生产工艺: 中国, 109384699A[P]. 2019-02-26. |
MA B, PAN S, SHU X L. On-line completely-continuous-flow production process for directly preparing organic peroxide by using hydrogen peroxide as raw material: CN, 109384699A[P]. 2019-02-26. | |
3 | 奎彩艳. 有机过氧化物的生产工艺研究进展[J]. 新型工业化, 2019, 9(10): 73-76. |
KUI C Y. Progress in the production technology of organic peroxides[J]. J New Ind, 2019, 9(10): 73-76. | |
4 | VEDRINE J C. Importance, features and uses of metal oxide catalysts in heterogeneous catalysis[J]. Chin J Catal, 2019, 40(11): 1627-1636. |
5 | STEFAN B, SIEWNIAK A. Tri-liquid system in the synthesis of dialkyl peroxides using tetraalkylammonium salts as phase-transfer catalysts[J]. Appl Catal A, 2010, 385(2): 208-213. |
6 | 刘薇薇. 有机过氧化物的生产工艺研究进展[J]. 天津化工, 2017, 31(1): 3-4. |
LIU W W. Progress in the production technology of organic peroxides[J]. Tianjin Chem Ind, 2017, 31(1): 3-4. | |
7 | MU C L, CAO Y H, WANG H J, et al. A kinetics study on cumene oxidation catalyzed by carbon nanotubes: effect of N-doping[J]. Chem Eng Sci, 2018: 177391-177398. |
8 | 齐秀玲. 离子交换树脂催化剂的应用及发展趋势[J]. 精细与专用化学品, 2012, 20(7): 15-18. |
QI X L. Application and development trends of ion exchange resin catalyst[J]. Fine Spec Chem, 2012, 20(7): 15-18. | |
9 | 唐小华, 潘姣, 康晓晓, 等. Amberlyst-15催化丁酮氧化制备过氧化甲乙酮[J]. 应用化学, 2017, 34(4): 408-413. |
TANG X H, PAN J, KANG X X, et al. Amberlyst-15 catalyzed oxidation of butanone to methyl ethyl ketone peroxide[J]. Chin J Appl Chem, 2017, 34(4): 408-413. | |
10 | 唐小华, 蒋旭, 潘姣, 等. Amberlyst-15催化叔丁醇氧化制备叔丁基过氧化物[J]. 西北师范大学学报(自然科学版), 2017, 53(1): 70-73. |
TANG X H, JIANG X, PAN J, et al. Oxidation of tert-butylalcohol to tert-butyl peroxides catalyzed by Amberlyst-15[J]. J Northwest Norm Univ (Nat Sci), 2017, 53(1): 70-73. | |
11 | VORONOV M S, SAPUNOV V N, MAKAROV A A, et al. Improvement of a process for preparing peracetic acid by the reaction of acetic acid with hydrogen peroxide in aqueous solutions, catalyzed by ion-exchange resins[J]. Russ J Appl Chem, 2016, 89: 421-431. |
12 | 潘姣. 离子交换树脂催化合成过氧化甲乙酮和过氧化乙酰丙酮[D]. 兰州: 西北师范大学, 2017. |
PAN J. Synthesis of methyl ethyl ketone peroxide and acetylacetone peroxide catalyzed by ion exchange resin[D]. Lanzhou: Northwest Normal University, 2017. | |
13 | EBRAHIMI F, KOLEHMAINEN E, TURUNEN I. Heterogeneously catalyzed synthesis of performic acid in a microstructured reactor[J]. Chem Eng J, 2012, 179: 312-317. |
14 | 刘冰冰, 刘佳, 张辰凌, 等. 离子交换树脂-固相萃取富集-电感耦合等离子体光谱法测定水中重金属元素[J]. 光谱学与光谱分析, 2018, 38(12): 3917-3922. |
LIU B B, LIU J, ZHANG C L, et al. Preconcentration and determination of heavy metals in water samples by ion exchange resin solid phase extraction with inductively coupled plasma atomic emission spectrometry[J]. Spectrosc Spectral Anal, 2018, 38(12): 3917-3922. | |
15 | JOLHE P D, BHANVASE B A, PATIL V S, et al. Sonochemical synthesis of peracetic acid in a continuous flow micro-structured reactor[J]. Chem Eng J, 2015, 276(15): 91-96. |
16 | 李亚男, 何文军, 俞峰萍, 等. 离子交换树脂在有机催化反应中的应用进展[J]. 应用化学, 2015, 32(12): 1343-1357. |
LI Y N, HE W J, YU F P, et al. Progress on application of ion exchange resins in catalytic organic reaction[J]. Chin J Appl Chem, 2015, 32(12): 1343-1357. | |
17 | 尚会建, 张少红, 赵丹, 等. 分子筛催化剂的研究进展[J]. 化工进展, 2011, 30(S1): 407-410. |
SHANG H J, ZHANG S H, ZHAO D, et al. Research progress of molecular sieve catalyst[J]. Chem Ind Eng Prog, 2011, 30(S1): 407-410. | |
18 | 任德志, 于飞, 常仕英, 等. CHA型分子筛在柴油车NOx排放控制的研究进展[J]. 贵金属, 2022, 43(3): 75-81, 88. |
REN D Z, YU F, CHANG S Y, et al. Research progress of CHA molecular sieve in NOx emission control of diesel vehicles[J]. Precious Met, 2022, 43(3): 75-81, 88. | |
19 | 冯勇超, 于庆君, 易红宏, 等. MFI型分子筛在VOCs去除领域的研究进展[J]. 材料导报, 2020, 34(17): 17089-17098. |
FENG Y C, YU Q J, YI H H, et al. Research progress of MFI-type zeolites in the field of VOCs removal[J]. Mater Rep, 2020, 34(17): 17089-17098. | |
20 | 张艳维, 杨爽, 赵亮, 等. 钛硅分子筛的合成与应用[J]. 精细石油化工进展, 2010, 11(3): 25-28. |
ZHANG Y W, YANG S, ZHAO L, et al. Synthesis and application of titanosilicate molecular sieves[J]. Adv Fine Petrochem, 2010, 11(3): 25-28. | |
21 | 惠菲. 锆(钛)改性HZSM-5分子筛和UiO-66催化合成过氧化甲乙酮[D]. 兰州: 西北师范大学, 2020. |
HUI F. Synthesis of methyl ethyl ketone peroxide catalyzed by zirconium(titanium) modified HZSM-5 zeolites and UiO-66[D]. Lanzhou: Northwest Normal University, 2020. | |
22 | 刘平乐, 刘华杰, 符雅芬, 等. 一种过氧化环己酮的制备方法: CN, 107266344B[P]. 2021-09-14. |
LIU P Y, LIU H J, FU Y F, et al. Cyclohexanone peroxide preparation method: CN, 107266344B[P]. 2021-09-14. | |
23 | 黄燕民, 陈唐建, 翟志强, 等. 利用钛硅分子筛复合催化剂合成过氧化羧酸烷基酯的方法: 中国, 112624948A[P]. 2021-04-09. |
HUANG Y M, CHEN T J, ZHAI Z Q, et al. Method for synthesizing alkyl peroxycarboxylate by using titanium silicalite molecular sieve composite catalyst: CN, 112624948A[P]. 2021-04-09. | |
24 | 金国杰, 康陈军, 汪超, 等. 一种同时制备多种化合物的方法及得到的化合物: 中国, 114426509A[P]. 2022-05-03. |
JIN G J, KANG C J, WANG C, et al. Method for preparing multiple compounds at the same time and obtained compounds: CN, 114426509A[P]. 2022-05-03. | |
25 | 金国杰, 高焕新, 宗弘元, 等. 联产环氧化物和过氧化二异丙苯的方法: 中国, 105367518B[P]. 2018-07-17. |
JIN G J, GAO H X, ZONG H Y, et al. Method for co-production of epoxide and dicumyl peroxide: CN,105367518B[P]. 2018-07-17. | |
26 | 金国杰, 谭永生, 高焕新, 等. α,α'-二羟基-二异丙基苯、双-(叔丁基过氧化异丙基)苯和环氧化合物的合成方法: 中国, 111100054A[P]. 2020-05-05. |
JIN G J, TAN Y S, GAO H X, et al. Synthesis method of alpha, alpha'-dihydroxy-diisopropyl benzene, bis-(tert-butyl isopropyl peroxide) benzene and epoxy compound: CN, 111100054A[P]. 2020-05-05. | |
27 | 林民, 刘郁东, 朱斌, 等. 一种叔丁基过氧化氢的制备方法: 中国, 1286808C[P]. 2006-11-29. |
LIN M, LIU Y D, ZHU B, et al. Process for preparing tert-butyl hydroperoxide: CN, 1286808C[P]. 2006-11-29. | |
28 | 史春风, 朱斌, 林民, 等. 一种叔丁醇氧化的方法: 中国, 102863368A[P]. 2013-01-09. |
SHI C F, ZHU B, LIN M, et al. Method for oxidizing tertiary butanol: CN, 102863368A[P]. 2013-01-09. | |
29 | 孔健. 相转移催化剂的类型与应用[J]. 潍坊学院学报, 2004, 4(6): 20-23. |
KONG J. The type and application of the phase transfer catalysts[J]. J Weifang Univ, 2004, 4(6): 20-23. | |
30 | 卢言菊, 赵振东, 徐俊明. 相转移催化法合成羧酸酯用催化剂研究进展[J]. 精细石油化工进展, 2007(6): 47-50. |
LU Y J, ZHAO Z D, XU J M. Research progresses of phase transfer catalysts used in synthesis of carboxylic ester[J]. Adv Fine Petrochem, 2007(6): 47-50. | |
31 | 段海宝, 周艳平, 彭奇均. 过氧化苯甲酰合成新工艺研究[J]. 中国食品添加剂, 2002(5): 23-24. |
DUAN H B, ZHOU Y P, PENG Q J. Study of new method for sythesize of benzoyl peroxide[J]. China Food Addit, 2002(5): 23-24. | |
32 | 段海宝, 崔春伟, 蔡国成, 等. 过氧化苯甲酰合成新工艺的工业化研究[J]. 化工进展, 2003(3): 293-294. |
DUAN H B, CUI C W, CAI G C, et al. New method for synthesis of benzoyl peroxide[J]. Chem Ind Eng Prog, 2003(3): 293-294. | |
33 | 梁松杰. 橡胶硫化剂过氧化二苯甲酰的制备方法: 中国, 104592079A[P]. 2015-05-06. |
LIANG S J. Preparation method of rubber vulcanizer dibenzoyl peroxide: CN, 104592079A[P]. 2015-05-06. | |
34 | 赵鹏, 翁行尚, 张小春, 等. 一种利用相转移催化制备间氯过氧苯甲酸的方法: 中国, 111039842A[P]. 2020-04-21. |
ZHAO P, WEN X S, ZHANG X C, et al. Method for preparing m-chloroperoxybenzoic acid by utilizing phase transfer catalysis: CN, 111039842A[P]. 2020-04-21. | |
35 | GILLNER D, ZAWADIAK J, MAZURKIEWICZ R. et al. ESI-MS study of copper chloride/phase-transfer catalytic systems for oxidation of cumene with 1-methyl-1-phenylethyl hydroperoxide[J]. Monatsh Chem, 2010, 141: 143-147. |
36 | MAGOSSO M, BERG M V, SCHAAF J V. Kinetic study and modeling of the Schotten-Baumann synthesis of peroxyesters using phase-transfer catalysts in a capillary microreactor[J]. React Chem Eng, 2021, 6: 1574-1590. |
37 | 张倩倩. 过渡金属氧化物催化剂[J]. 科学技术创新, 2018(7): 59-60. |
ZHANG Q Q. Transition metal oxide catalyst[J]. Sci Technol Innovation, 2018(7): 59-60. | |
38 | 李莹, 邓军, 李胜楠, 等. W/Sn/Mg复合氧化物催化合成过氧乙酸的工艺研究[J]. 华中师范大学学报(自然科学版), 2017, 51(1): 56-61. |
LI Y, DENG J, LI S N, et al. The synthesis and the technological study of peroxyacetic acid catalyzed by composite oxide W/Sn/Mg[J]. J Cent China Norm Univ (Nat Sci), 2017, 51(1): 56-61. | |
39 | 丁榕, 张光旭, 石楷华, 等. 催化氧化合成过氧乙酸的本征动力学[J]. 华中师范大学学报(自然科学版), 2019, 53(2): 229-236. |
DING R, ZHANG G X, SHI K H, et al. Intrinsic kinetics of synthesis of peracetic acid by catalytic oxidation[J]. J Cent China Norm Univ (Nat Sci), 2019, 53(2): 229-236. | |
40 | 刘华杰, 李静港, 聂翼飞, 等. 一种以铁氧化合物为催化剂制备过氧化酮的方法: 中国, 109180550B[P]. 2020-05-08. |
LIU H J, LI J G, NIE Y F, et al. Method for preparing ketone peroxide by ferrite compound as catalyst: CN,109180550B[P]. 2020-05-08. | |
41 | LIU H S, WANG K J, CAO X Y, et al. A new highly active La2O3-CuO-MgO catalyst for the synthesis of cumyl peroxide by catalytic oxidation[J]. RSC Adv, 2021, 11(21): 12532-12542. |
42 | XU S, HUANG C P, ZHANG J, et al. Catalytic activity of Cu/MgO in liquid phase oxidation of cumene[J]. Korean J Chem Eng, 2009, 26(6): 1568-1573. |
43 | 王闻年, 高焕新, 魏一伦, 等. 烷基苯氢过氧化物的制备方法: 中国, 110845382A[P]. 2020-02-28. |
WANG W N, GAO H X, WEI Y L, et al. Alkylbenzene hydroperoxide preparation method: CN, 110845382A[P]. 2020-02-28. | |
44 | 薛常海, 王日杰, 张继炎. 碱土金属氧化物催化氧化异丙苯反应研究[J]. 石油学报(石油加工), 2002,18(3): 30-35. |
XUE C H, WANG R J, ZHANG J Y. Study on peroxidation of cumene catalyzed by alkaline earth oxides[J]. Acta Pet Sin, (Petrol Proc Sec), 2002,18(3): 30-35. | |
45 | 赵克品, 吴美玲, 周灵杰, 等. 一种纳米MgO催化剂的制备方法及应用: 中国, 107297202A[P]. 2017-10-27. |
ZHAO K P, WU M L, ZHOU L J, et al. Preparation method and application of nano MgO catalyst: CN, 107297202A[P]. 2017-10-27. | |
46 | 王乐夫, 张美英. 片状纳米 CuO 的合成及用于异丙苯氧化反应的催化性能研究[J]. 茂名学院学报, 2003, 13(3): 1-5. |
WANG L F, ZHANG M Y. The synthesis of nano-sized CuO powder and their catalytic properties in oxidation of cumene to cumene hydroperoxide(CHP)[J]. J Guangdong Univ Petrochem Technol, 2003, 13(3): 1-5. | |
47 | ZHANG C F, BAI Y X, YIN Y Q, et al. High catalytic performance of CuO nanocrystals with largest defects[J]. Korean J Chem Eng, 2011, 28(2): 602-607. |
48 | VIVEK P C, PARAG R G. Intensification of synthesis of cumene hydroperoxide using sonochemical reactors[J]. Ind Eng Chem Res, 2011, 50(22): 12433-12438. |
49 | IGOR B K, ELENA R L, IRINA R S, et al. Mixed hetero-/homogeneous TiO2/N-hydroxyimide photocatalysis in visible-light-induced controllable benzylic oxidation by molecular oxygen[J]. Chin J Catal, 2021, 42(10): 1700-1711. |
50 | 吴思宇. 多元金属复合物催化氧气氧化异丙苯制备异丙苯过氧化物[D]. 兰州: 西北师范大学, 2019. |
WU S Y. Catalytic oxidation of cumene with oxygen to cumene peroxide by multi-metal composite[D]. Lanzhou: Northwest Normal University, 2019. | |
51 | MAKSIMOV Y V, SUZDALEV I P. Study of cumene oxidation over zirconia-titania-and alumina-based complex oxides obtained by sol-gel methed: activity-stucture relationships[J]. J Mol Catal A: Chem, 1996, 105(3): 167-173. |
52 | AGARWAL A K, SRIVASTAVA R D. Kinetics of oxidation of cumene over supported NiO and NiMoO4 catalysts[J]. J Catal, 1976, 45(1): 86-93. |
53 | 吴美玲, 赵克品, 周灵杰, 等. 一种用于异丙苯氧化连续反应的成型催化剂及制备方法: 中国, 107398278A[P]. 2017-11-28. |
WU M L, ZHAO K P, ZHOU L J, et al. Molded catalyst for continuous reaction of cumin oxidation and preparation method: CN, 107398278A[P]. 2017-11-28. | |
54 | 孟欢, 张学俊. 高分子负载催化剂的应用研究进展[J]. 化学推进剂与高分子材料, 2010, 8(6): 42-45, 62. |
MENG H, ZHANG X J. Application research progress of polymer-supported catalyst[J]. Chem Propell Polym Mater, 2010, 8(6): 42-45, 62. | |
55 | 陈唐建, 翟志强, 许淑女, 等. 二酰基过氧化物的合成方法: 中国, 109336802A[P]. 2019-02-15. |
CHEN T J, ZHAI Z Q, XU S Y, et al. Synthesis method of diacyl peroxide: CN, 109336802A[P]. 2019-02-15. | |
56 | 陈唐建, 翟志强, 许淑女, 等. 过氧化羧酸叔丁/戊酯的合成方法: 中国, 109331871A[P]. 2019-02-15. |
CHEN T J, ZHAI Z Q, XU S Y, et al. Synthetic method of tert-butyl/pentyl peroxycarboxylate: CN, 109331871A[P]. 2019-02-15. | |
57 | 陈唐建, 翟志强, 许淑女, 等. 过氧化二碳酸酯的合成方法: 中国, 109485592A[P]. 2019-03-19. |
CHEN T J, ZHAI Z Q, XU S Y, et al. Dicarbonate peroxide synthesis method: CN, 109485592A[P]. 2019-03-19. | |
58 | WANG C C, CHEN H C, CHEN C Y, et al. Study on the peroxidation of cumene catalyzed by metal-chelated copolymer[J]. React Funct Polym, 2003, 57: 125-135. |
59 | BAJ S, SIEWNIAK A, SOCHA B. Synthesis of dialkyl peroxides in the presence of polyethylene glycol or its derivatives as phase-transfer catalyst in liquid-liquid-liquid system[J]. Appl Catal A, 2007, 321(2): 175-179. |
60 | KOPE D, BAJ S, SIEWNIAK A. Ultrasound-assisted green synthesis of dialkyl peroxides under phase-transfer catalysis conditions[J]. Molecules, 2019, 25(1): 118. |
61 | 周理龙, 曾祥杰, 李正杰, 等. 碳催化剂在催化反应中的应用[J]. 分子催化, 2021, 35(1): 76-102. |
ZHOU L L, ZENG X J, LI Z J, et al. Application of carbon catalysts in catalytic reactions[J]. J Mol Catal, 2021, 35(1): 76-102. | |
62 | CHI Y M, ZHU M L, LI Y H, et al. The effect of surface oxygenated groups of carbon nanotubes on liquid phase catalytic oxidation of cumene[J]. Catal Sci Technol, 2016, 6: 2396-2402. |
63 | DENG J, LI Y H, CAO Y H, et al. Trace amount of Cu(OAc)2 boosting efficiency on the cumene oxidation catalyzed by carbon nanotubes washed with HCl[J]. Catal Sci Technol, 2020, 10: 2523-2530. |
64 | HUA J W, GUO S Y, YANG Z, et al. Microfluidic synthesis of tert-butyl peresters via KI-catalyzed oxidative coupling of methyl arenes and tert-butyl hydroperoxide[J]. Org Process Res Dev, 2017, 21(10): 1633-1637. |
65 | 廖如佴. 橡胶交联剂过氧化环己酮的合成方法: 中国, 108239012A[P]. 2018-07-03. |
LIAO R E. Synthetic method for rubber cross-linking agent cyclohexanone peroxide: CN, 108239012A[P]. 2018-07-03. | |
66 | SHEN H M, HU M Y, LIU L, et al. Efficient and selective oxidation of tertiary benzylic C—H bonds with O2 catalyzed by metalloporphyrins under mild and solvent-free conditions[J]. Appl Catal A, 2020, 599: 117599. |
67 | 谢仰熹, 李方怿, 赵常贵, 等. N-氟代双苯磺酰胺介导的氮杂卡宾氧化催化合成过氧酯及酰胺的研究[J]. 有机化学, 2016, 36: 105-112. |
XIE Y X, LI F Y, ZHAO C G, et al. N-Heterocyclic carbene catalyzed and N-fluorobenzenesulfonimide mediated oxidative synthesis of perester and amide[J]. Chin J Org Chem, 2016, 36: 105-112. | |
68 | NOWACKA A, BRIANTAIS P, PRESTIPINO C, et al. Selective aerobic oxidation of cumene to cumene hydroperoxide over mono- and bimetallic trimesate metal-organic frameworks prepared by a facile “green” aqueous synthesis[J]. ACS Sustainable Chem Eng, 2019, 7(8): 7708-7715. |
69 | 周友三, 张毅城, 吴思宇, 等. 铜掺杂钙铝水滑石催化氧化异丙苯制备异丙苯过氧化氢[J]. 应用化学, 2022, 39(6): 941-948. |
ZHOU Y S, ZHANG Y C, WU S Y, et al. Catalytic performance of Cu-doped calcium aluminum layered double hydrotalcites for the oxidation of cumene to cumene hydrogen peroxide[J]. Chin J Appl Chem, 2022, 39(6): 941-948. | |
70 | 李立夏, 殷国强, 刘嵩, 等. 微通道反应器内合成过氧化物的研究进展[J]. 染料与染色, 2022, 59(1): 51-55, 62. |
LI L X, YIN G Q, LIU S, et al. Research progress on the synthesis of peroxides in microchannel reactors[J]. Dyest Color, 2022, 59(1): 51-55, 62. | |
71 | 刘兆利, 张鹏飞. 微反应器在化学化工领域中的应用[J]. 化工进展, 2016, 35(1): 10-17. |
LIU Z L, ZHANG P F. Applications of microreactor in chemistry and chemical engineering[J]. Chem Ind Eng Prog, 2016, 35(1): 10-17. | |
72 | 吴迪, 高朋召. 微反应器技术及其研究进展[J]. 中国陶瓷工业, 2018, 25(5): 19-26. |
WU D, GAO P Z. Microreactor technology and its research progress[J]. China Ceram Ind, 2018, 25(5): 19-26. | |
73 | PRIESCHL M, ÖTVÖS S B, KAPPE C O. Sustainable aldehyde oxidations in continuous flow using in situ-generated performic acid [J]. ACS Sustainable Chem Eng, 2021, 9(16): 5519-5525. |
74 | 王聪, 杨克俭, 吴昊, 等. 一种连续流快速制备过氧乙酸的方法: 中国, 111333559A[P]. 2020-06-26. |
WANG C, YANG K J, WU H, et al. Method for quickly preparing peracetic acid through continuous flow: CN,111333559A[P]. 2020-06-26. | |
75 | 郑辉东, 赵从涛, 陈晶晶, 等. 一种柠檬烯氢过氧化物的制备方法: 中国, 111393345A[P]. 2020-07-10. |
ZHENG H D, ZHAO C T, CHEN J J, et al. Preparation method of limonene hydroperoxide: CN, 111393345A[P]. 2020-07-10. | |
76 | MA B, PAN S, SHU X L. Online full continuous flow production process for directly preparing organic peroxide with hydrogen peroxide as raw material: WO, 2019034004A1[P]. 2019-02-21. |
[1] | Yi-Chen YU, Yu-Chen ZHANG, Yao-Yuan ZHANG, Qin WU, Da-Xin SHI, Kang-Cheng CHEN, Han-Sheng LI. Research Progress of Bulk Metal Oxides for Non-oxidative Propane Dehydrogenation [J]. Chinese Journal of Applied Chemistry, 2023, 40(6): 789-805. |
[2] | Xing-Quan XIONG, Hui ZHANG, Li-Zhu GAO. Progress in Chemical Modification and Application of Lignin [J]. Chinese Journal of Applied Chemistry, 2023, 40(6): 806-819. |
[3] | Bing LI, Jun-Hui LIU, Ya-Kun SONG, Xiang LI, Xu-Ming GUO, Jian XIONG. Recent Advances in Application of Metal-Organic Frameworks for Hydrogen Generation by Catalytic Hydrolysis of Ammonia Borane [J]. Chinese Journal of Applied Chemistry, 2023, 40(3): 329-340. |
[4] | Lu-Fei WANG, Meng-Meng ZHEN, Bo-Xiong SHEN. Research Progress of Controlling Lithium-Sulfur Batteries by Electrocatalysts under Lean Electrolyte Conditions [J]. Chinese Journal of Applied Chemistry, 2023, 40(2): 188-209. |
[5] | Rong CAO, Jie-Zhen XIA, Man-Hua LIAO, Lu-Chao ZHAO, Chen ZHAO, Qi WU. Theoretical Research Progress of Single Atom Catalysts in Electrochemical Synthesis of Ammonia [J]. Chinese Journal of Applied Chemistry, 2023, 40(1): 9-23. |
[6] | Dan ZHANG, Run-Mei SHANG, Zhen-Tao ZHAO, Jun-Hua LI, Jin-Juan XING. Selective Oxidation of Methanol to Dimethoxymethane over V/Ce⁃Al2O3 Catalysts [J]. Chinese Journal of Applied Chemistry, 2022, 39(9): 1429-1436. |
[7] | Xian WANG, Xiao-Long YANG, Rong-Peng MA, Chang-Peng LIU, Jun-Jie GE, Wei XING. Atomic Dispersion Ir‑N‑C Catalysts for Anode Anti‑poisoning Electrolysis in Fuel Cell [J]. Chinese Journal of Applied Chemistry, 2022, 39(8): 1202-1208. |
[8] | Ye LIU, Shao-Bo GUO, Yan-Li LIANG, Hong-Guang GE, Jian-Qi MA, Zhi-Feng LIU, Bo LIU. Preparation and Catalytic Performance of Core‑Shell CuFe2O4@NH2@Pt Nanocomposites [J]. Chinese Journal of Applied Chemistry, 2022, 39(8): 1237-1245. |
[9] | Chao ZHANG. Research Prospect of Single Atom Catalysts Towards Electrocatalytic Reduction of Carbon Dioxide [J]. Chinese Journal of Applied Chemistry, 2022, 39(6): 871-887. |
[10] | Shi-Shuai LI, Jia-Qi LIU, Jia-Yi WANG, Jiang-Feng YANG. Research Progress on Synthesis of Hierarchical Beta Zeolites [J]. Chinese Journal of Applied Chemistry, 2022, 39(6): 912-926. |
[11] | Yan WANG, Shu-Cong ZHANG, Xing-Kun WANG, Zhi-Cheng LIU, Huan-Lei WANG, Ming-Hua HUANG. Research Progress on Transition Metal⁃Based Catalysts for Hydrogen Evolution Reaction via Seawater Electrolysis [J]. Chinese Journal of Applied Chemistry, 2022, 39(6): 927-940. |
[12] | Feng LI, Shi-Yu LU, Yu ZHANG, Li-Jun GUO, Xue ZHAI, Cui-Qin LI. Catalytic Properties of Silylated⁃Salicylaldimine Transition Metal Complexes Functionalized Nano⁃silica Catalysts in Ethylene Oligomerization [J]. Chinese Journal of Applied Chemistry, 2022, 39(6): 949-959. |
[13] | Wei-Jin CAO, Lu BAI, Lan-Lan WU, Jing-De LI, Shu-Yan SONG. Multi⁃Shell Hollow Nickel⁃Cobalt Bimetallic Phosphide Nanospheres for Highly Efficient Oxygen Evolution Reaction [J]. Chinese Journal of Applied Chemistry, 2022, 39(4): 666-672. |
[14] | Ke WANG, Xiao WANG, Shu-Yan SONG. Recent Advances in Direct Oxidation of Methane to Methanol [J]. Chinese Journal of Applied Chemistry, 2022, 39(4): 540-558. |
[15] | Xue WANG, Yi-Bo WANG, Xian WANG, Jian-Bing ZHU, Jun-Jie GE, Chang-Peng LIU, Wei XING. Research Progress of Mechanism of Acidic Oxygen Evolution Reaction and Development of Ir⁃based Catalysts [J]. Chinese Journal of Applied Chemistry, 2022, 39(4): 616-628. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||