
Chinese Journal of Applied Chemistry ›› 2023, Vol. 40 ›› Issue (6): 806-819.DOI: 10.19894/j.issn.1000-0518.220363
• Review • Previous Articles Next Articles
Xing-Quan XIONG1(), Hui ZHANG1,2, Li-Zhu GAO1
Received:
2022-11-08
Accepted:
2023-05-05
Published:
2023-06-01
Online:
2023-06-27
Contact:
Xing-Quan XIONG
About author:
xxqluli@hqu.edu.cnSupported by:
CLC Number:
Xing-Quan XIONG, Hui ZHANG, Li-Zhu GAO. Progress in Chemical Modification and Application of Lignin[J]. Chinese Journal of Applied Chemistry, 2023, 40(6): 806-819.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.220363
1 | DAHMEN N, LEWANDOWSKI I, ZIBEK S. Integrated lignocellulosic value chains in a growing bioeconomy: status quo and perspectives[J]. GCB Bioenergy, 2019, 11(1): 107-117. |
2 | WANG F Q, OUYANG D H, ZHOU Z Y, et al. Lignocellulosic biomass as sustainable feedstock and materials for power generation and energy storage[J]. J Energy Chem, 2021, 57(6): 247-280. |
3 | SANGHA A K, PARKS J M, STANDAERT R F, et al. Radical coupling reactions in lignin synthesis: a density functional theory study[J]. J Phys Chem B, 2012, 116(16): 4760-4768. |
4 | 任苗苗, 吕惠生, 张敏华, 等. 木质素资源利用的研究进展[J]. 高分子通报, 2012(8): 44-49. |
REN M M, LV H S, ZHANG M H, et al. Research progress on the application of lignin[J]. Chin Polym Bull, 2012(8): 44-49. | |
5 | WU R, LIU S S, WANG Q, et al. High strength and multifunctional polyurethane film incorporated with lignin nanoparticles[J]. Ind Crop Prod, 2022, 177: 114526. |
6 | 姚庆鑫, 谢建军, 刘军霞, 等. 离子强度对膨润土/木质素磺酸钠接枝丙烯酰胺-马来酸酐复合吸附树脂吸附Pb2+/Cu2+的影响[J]. 应用化学, 2015, 32(8): 940-947. |
YAO Q X, XIE J J, LIU J X, et al. Effect of ionic strength on the adsorption of Pb2+ and Cu2+ onto bentonite/sodium lignosulfonate graft-polymerized with acrylamide and maleic anhydride[J]. Chin J Appl Chem, 2015, 32(8): 940-947. | |
7 | ZHANG B, GUO T, LIU Y X, et al. Sustainable production of benzylamines from lignin[J]. Angew Chem Int Ed, 2021, 60(38): 20666-20671. |
8 | ZHANG B, GUO T, LI Z, et al. Transition-metal-free synthesis of pyrimidines from lignin β-O-4 segments via a one-pot multi-component reaction[J]. Nat Commun, 2022, 13: 3365. |
9 | WANG S C, BAI J X, INNOCENT M T, et al. Lignin-based carbon fibers: formation, modification and potential applications[J]. Green Energy Environ, 2022, 7(4): 578-605. |
10 | SINGH S K, OSTENDORF K, EURING M, et al. Environmentally sustainable, high-performance lignin-derived universal adhesive[J]. Green Chem, 2022, 24(6): 2624-2635. |
11 | 岳霞, 刘魁, 林夏露, 等. 中国七大主要水系重金属污染现况[J]. 预防医学论坛, 2014, 20(3): 209-223. |
YUE X, LIU K, LIN X L, et al. Current status of heavy metal pollution in seven major river systems in China[J]. Preventive Med Tribune, 2014, 20(3): 209-223. | |
12 | 李航彬, 钱波, 黄聪聪, 等. 钡盐沉淀法处理六价铬电镀废水[J]. 电镀与涂饰, 2014, 33(9): 391-395. |
LI H B, QIAN B, HUANG C C, et al. Treatment of hexavalent chromium-containing electroplating wastewater by barium salt precipitation[J]. Electroplat Finish, 2014, 33(9): 391-395. | |
13 | 张佳玲, 方芳, 董锦云, 等. 改性污泥质生物炭吸附污水中有机污染物的研究进展[J]. 环境化学, 2021, 40(10): 3144-3157. |
ZHANG J L, FANG F, DONG J Y, et al. Research progress on the removal of organic contaminants from wastewater by modified sludge-based biochar[J]. Environ Chem, 2021, 40(10): 3144-3157. | |
14 | 高利亚. 重金属水污染处理方法的研究进展[J]. 化学工程师, 2022, 4: 56-60. |
GAO L Y. Research progress of heavy metal water pollution treatment methods[J]. Chem Eng, 2022, 4: 56-60. | |
15 | 刘芳. 还原沉淀法对含铬重金属废水的处理研究[J]. 环境污染与防治, 2014, 36(4): 54-59. |
LIU F. Treatment of chromium containing heavy metal wastewater by reduction and sedimentation process[J]. Environ Pollution Control, 2014, 36(4): 54-59.. | |
16 | LIU X L, ZHU H X, QIN C R, et al. Adsorption of heavy metal ion from aqueous single metal solution by aminated epoxy-lignin[J]. Bioresources, 2013, 8(2): 2257-2269. |
17 | GE Y Y, SONG Q P, LI Z L. A Mannich base biosorbent derived from alkaline lignin for lead removal from aqueous solution[J]. Ind Eng Chem Res, 2015, 23: 228-234. |
18 | MENG Y, LI C, LIU X, et al. Preparation of magnetic hydrogel microspheres of lignin derivate for application in water[J]. Sci Total Environ, 2019, 685: 847-855. |
19 | HEO J W, AN L L, CHEN J S, et al. Preparation of amine-functionalized lignins for the selective adsorption of methylene blue and Congo red[J]. Chemosphere, 2022, 295: 133815. |
20 | 蔡雷, 熊兴泉, 唐忠科, 等. 基于巯基-炔的 “点击” 化学研究进展[J]. 化工进展, 2011, 30(9): 1982-1989. |
CAI L, XIONG X Q, TANG Z K, et al. Research progress of thiol-yne click chemistry[J]. Chem Ind Eng Prog, 2011, 30(9): 1982-1989. | |
21 | 徐源鸿, 熊兴泉, 蔡雷, 等. 巯基-烯点击化学[J]. 化学进展, 2012, 24(2/3): 385-394. |
XU Y H, XIONG X Q, CAI L, et al. Thiol-ene click chemistry[J]. Prog Chem, 2012, 24(2/3): 385-394. | |
22 | JIN C, ZHANG X Y, XIN J N. Thiol-ene synthesis of cysteine-functionalized lignin for the enhanced adsorption of Cu(Ⅱ) and Pb(Ⅱ)[J]. Ind Eng Chem Res, 2018, 57(23): 7872-7880. |
23 | JIN C, ZHANG X Y, XIN J N. Clickable synthesis of 1,2,4-triazole modified lignin-based adsorbent for the selective removal of Cd(Ⅱ)[J]. ACS Sustain Chem Eng, 2017, 5(5): 4086-4093. |
24 | QUINTANA G C, ROCHA G J M, GONALVES A R, et al. Evaluation of heavy metal removal by oxidised lignins in acid media from various sources[J]. Bioresources, 2008, 3(4): 1092-1102. |
25 | 马英梅, 方桂珍, 张锐, 等. 谷氨酸-木质素吸附剂的制备及对 Pb2+的吸附性能[J]. 东北林业大学学报, 2009, 37(10): 88-90. |
MA Y M, FANG G Z, ZHANG R, et al. Synthesis of glutamic acid lignin adsorbent and its adsorption to Pb2+[J]. J Northeast Forestry Univ, 2009, 37(10): 88-90. | |
26 | LU Q F, HUANG Z K, LIU B, et al. Preparation and heavy metal ions biosorption of graft copolymers from enzymatic hydrolysis lignin and amino acids[J]. Bioresource Technol, 2012, 104: 111-118. |
27 | SANTOS D A S D, RUDNITSKAYA A, EVTUGUIN D V. Modified kraft lignin for bioremediation applications[J]. J Environ Sci Heal Part A, 2012, 47(2): 298-307. |
28 | DIZHBITE T, JASHINA L, DOBELE G, et al. Polyoxometalate (POM)-aided modification of lignin from wheat straw biorefinery[J]. Holzforschung, 2013, 67(5): 539-547. |
29 | 曹胜磊, 耿增超, 王月玲, 等. 化学改性提高木质素水溶性及其对 Zn2+的络合能力[J]. 农业环境科学学报, 2016, 35(11): 2216-2223. |
CAO S L, GENG Z C, WANG Y L, et al. Modification of lignin for improvement the water-soluble property and ability to complex with Zn2+[J]. J Agro-Environ Sci, 2016, 35(11): 2216-2223. | |
30 | 周艳, 张红平, 张建平, 等. 多齿配体改性碱木质素对Hg2+和Cd2+的吸附性能[J]. 环境化学, 2016, 35(9): 1952-1960. |
ZHOU Y, ZHANG H P, ZHANG J P, et al. Adsorption of Cd2+/Hg2+ in aqueous solutions using chelating ligands modified alkali lignin[J]. Environ Chem, 2016, 35(9): 1952-1960. | |
31 | UPTON B M, KASKO A M. Strategies for the conversion of lignin to high-value polymeric materials: review and perspective[J]. Chem Rev, 2016, 116(4): 2275-2306. |
32 | GE, Y. Y, LI, Z. L. KONG Y, et al. Heavy metal ions retention by bi-functionalized lignin: synthesis, applications, and adsorption mechanisms[J]. J Ind Eng Chem, 2014, 20(6): 4429-4436. |
33 | YAN M F, LI Z L. Microwave-assisted functionalized lignin with dithiocarbamate for enhancing adsorption of Pb(Ⅱ)[J]. Mater Lett, 2016, 170: 135-138. |
34 | XU F, ZHU T T, RAO Q Q. Fabrication of mesoporous lignin-based biosorbent from rice straw and its application for heavy-metal-ion removal[J]. J Environ Sci, 2017, 53: 132-140. |
35 | 王延宝. 改性木质素磺酸盐制备及吸附重金属离子研究[J]. 材料科学与工艺, 2021, 29(6): 65-73. |
WANG Y B. Study on preparation of modified lignin sulfonate and adsorption for heavy metal ions[J]. Mater Sci Technol, 2021, 29(6): 65-73. | |
36 | YAO Q X, XIE J J, LIU J X. Adsorption of lead ions using a modified lignin hydrogel[J]. J Polym Res, 2014, 21(6): 465-471. |
37 | 姚庆鑫, 谢建军, 刘军霞, 等. 离子强度对膨润土/木质素磺酸钠接枝丙烯酰胺-马来酸酐复合吸附树脂吸附Pb2+/Cu2+的影响[J]. 应用化学, 2015, 32(8): 940-947. |
YAO Q X, XIE J J, LIU J X, et al. Effect of ionic strength on the adsorption of Pb2+ and Cu2+ onto bentonite/sodium lignosulfonate graft-polymerized with acrylamide and maleic anhydride[J]. Chin J Appl Chem, 2015, 32(8): 940-947. | |
38 | CIESIELCZYK F, BARTCZAK P, KLAPISZEWSKI L. Treatment of model and galvanic waste solutions of copper(Ⅱ) ions using a lignin/inorganic oxide hybrid as an effective sorbent[J]. J Hazard Mater, 2017, 328: 150-159. |
39 | WU L J, HUANG S Q, ZHENG J, et al. Synthesis and characterization of biomass lignin-based PVA super-absorbent hydrogel[J]. Inter J Biol Macrom, 2019, 140: 538-545. |
40 | KATARZYNA S S, DORATA K, LUKASZ K. Preparation and characterization of novel TiO2/lignin and TiO2-SiO2/lignin hybrids and their use as functional biosorbents for Pb(Ⅱ)[J]. Chem Eng J, 2017, 314: 169-181. |
41 | MARULASIDDESHWARA M B, KUMAR P R. Synthesis of Pd(0) nanocatalyst using lignin in water for the Mizoroki-Heck reaction under solvent-free conditions[J]. Intern J Biolog Macrom, 2015, 83: 326-334. |
42 | HEMANATHAN K, RAIMO A. Microwave-assisted esterification of tall oil fatty acids with methanol using lignin-based solid catalyst[J]. Energy Fuel, 2016, 30(11): 9451-9455. |
43 | 代红光, 刘旭慧, 王丽荣, 等. 生物质木质素磺酸催化合成N-取代吡咯[J]. 化学通报, 2018, 31(6): 929-933. |
DAI H G, LIU X H, WANG L R, et al. Synthesis of N-substituted pyrroles using lignosulfonic acid as biomass-based catalyst[J]. Chem Bull, 2018, 31(6): 929-933. | |
44 | ZENG S, ZHANG X, BAI L B, et al. Ionic-liquid-based CO2 capture systems: structure, interaction and process[J]. Chem Rev, 2017, 117(14): 9625-9673. |
45 | SULEMAN S, YOUNUS H A, AHMAD N, et al. Triazole based cobalt catalyst for CO2 insertion into epoxide at ambient pressure[J]. Appl Catal A, 2020, 591: 117384. |
46 | LIU M S, LI X, LIANG L, et al. Protonated triethanolamine as multi-hydrogen bond donors catalyst for efficient cycloaddition of CO2 to epoxides under mild and cocatalyst-free conditions[J]. J CO2 Util, 2016, 16: 384-390. |
47 | WU S, TENG C, CAI S, et al. Triphenylphosphine-based functional porous polymer as an efficient heterogeneous catalyst for the synthesis of cyclic carbonates from CO2[J]. Nanoscale Res Lett, 2017, 12: 609. |
48 | LAI S L, GAO J B, XIONG X Q. Rosin-based porous heterogeneous catalyst functionalized with hydroxyl groups and triazole groups for CO2 chemical conversion under atmospheric pressure condition[J]. React Funct Polym, 2021, 165: 104976. |
49 | LAI S L, GAO J B, ZHANG H, et al. Luffa sponge supported dendritic imidazolium ILs with high-density active sites as highly efficient and environmentally friendly catalysts for CO2 chemical fixation[J]. J CO2 Util, 2020, 38: 148-157. |
50 | XIONG X Q, ZHANG H, LAI S L, et al. Lignin modified by deep eutectic solvents as green, reusable, and bio-based catalysts for efficient chemical fixation of CO2[J]. React Funct Polym, 2020, 149: 104502. |
51 | KIM J, OH S J, HWANG H. Structural features and thermal degradation properties of various lignin macromolecules obtained from poplar wood (populus albaglandulosa)[J]. Polym Degrad Stabil, 2013, 98(9): 1671-1678. |
52 | BREBU M, TAMMINEN T, SPIRIDON I. Thermal degradation of various lignins by TG-MS/FTIR and Py-GC-MS[J]. J Anal Appl Pyrolysis, 2013, 104: 531-539. |
53 | LAUBERTE L, FABRE G, PONOMARENKO J. Lignin modification supported by DFT-based theoretical study as a way to produce competitive natural antioxidants[J]. Molecules, 2019, 24(9): 1794. |
54 | SUEISHI Y, NII R. A comparative study of the antioxidant profiles of olive fruit and leaf extracts against five reactive oxygen species as measured with a multiple free-radical scavenging method[J]. J Food Sci, 2020, 85(9): 2737-2744. |
55 | CHEN F, DAI H H, DONG X L, et al. Physical properties of lignin-based polypropylene blends[J]. Polym Comp, 2011, 32(7): 1019-1025. |
56 | YU Y M, FU S Y, SONG P G. Functionalized lignin by grafting phosphorus-nitrogen improves the thermal stability and flame retardancy of polypropylene[J]. Polym Degrad Stabil, 2012, 97(4): 541-546. |
57 | LIU L N, QIAN M B, SONG P A, et al. Fabrication of green lignin-based flame retardants for enhancing the thermal and fire retardancy properties of polypropylene/wood composites[J]. ACS Sustainable Chem Eng, 2016, 4(4): 2422-2431. |
58 | WAGEMAKER T A L, CARVALHO C R L, MAIA N B, et al. Sun protection factor, content and composition of lipid fraction of green coffee beans[J]. Indust Crops Prod, 2011, 33: 469-473. |
59 | ARGYROPOULOS D S. Quantitative phosphorus 31 NMR analysis of lignins, a new tool for the lignin chemist[J]. J Wood Chem Technol, 1994, 14(1): 45-63. |
60 | NICHOLS J A, KATIYAR S K. Skin photoprotection by natural polyphenols: anti-inflammatory, antioxidant and DNA repair mechanisms[J]. Arch Dermatol Res, 2010, 302(2): 71-83. |
61 | SADEGIFAR H, VENDITTI R, JUR J, et al. Cellulose-lignin biodegradable and flexible UV protection film[J]. ACS Sustainable Chem Eng, 2017, 5: 625-631. |
62 | ARGYROPOULSO D S, MENACHEM S B, KAPLAN D L. Biopolymers from renewable resources[M]. New York: Springer, 1998, 12: 292-322. |
63 | SADEGHIFAR H, VENDITTI R, JUR J S. Cellulose-lignin biodegradable and flexible UV protection film[J]. ACS Sustainable Chem Eng, 2017, 5(1): 625-631. |
64 | 吴强林, 方红霞, 丁运生. 木质素基酚醛树脂泡沫塑料的结构与性能研究[J]. 工程塑料应用, 2012, 40(11): 69-73. |
WU Q L, FANG H X, DING Y S. Structure and properties of lignin based phenolic foam[J]. Eng Plast Appl, 2012, 40(11): 69-73. | |
65 | 杨昇, 王钧, 李改云, 等. 尿素改性木质素基酚醛树脂的性能[J]. 林业工程学报, 2018, 3(5): 28-33. |
YANG S, WANG J, LI G Y, et al. Performances of lignin-phenol-formaldehyde resin modified by urea[J]. J Forestry Eng, 2018, 3(5): 28-33. | |
66 | 楼宏铭, 刘青, 张海彬. 造纸竹浆黑液的接枝磺化工艺及高效减水剂[J]. 高分子材料科学与工程, 2009, 25(6): 103-106. |
LOU H M, LIU Q, ZHANG H B. Graft sulfonation process of bamboo pulp black liquor used as superplasticizer[J]. Poly Mater Sci Eng, 2009, 25(6): 103-106. | |
67 | 孙红岩, 韩洪燕, 王晓平, 等. 改性木质素高效减水剂作用机理的研究[ |