Chinese Journal of Applied Chemistry ›› 2023, Vol. 40 ›› Issue (4): 571-582.DOI: 10.19894/j.issn.1000-0518.220324
• Energy Materials • Previous Articles Next Articles
Fang-Zheng HU1, Xing GAO2, Lei LIU1, Tian-Heng YUAN1, Ning CAO1, Kai LI1, Ya-Tao WANG3, Jian-Hua LI3, Hui-Qin LIAN1(), Xiao-Dong WANG2, Xiu-Guo CUI1()
Received:
2022-10-07
Accepted:
2023-02-15
Published:
2023-04-01
Online:
2023-04-17
Contact:
Hui-Qin LIAN,Xiu-Guo CUI
About author:
cuixiuguo@bipt.edu.cn; lianhuiqin@bipt.edu.cnSupported by:
CLC Number:
Fang-Zheng HU, Xing GAO, Lei LIU, Tian-Heng YUAN, Ning CAO, Kai LI, Ya-Tao WANG, Jian-Hua LI, Hui-Qin LIAN, Xiao-Dong WANG, Xiu-Guo CUI. Advances in Black Phosphorus Anode Advantages and Optimization in Li-ion Battery Anodes[J]. Chinese Journal of Applied Chemistry, 2023, 40(4): 571-582.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.220324
Active materials | First cycle reversible specific capacity/(mA·h·g-1) | Initial coulomb efficiency/% | Ampere density/(A·g-1)/number of cycles/capacity retention rate/% | Ref. |
---|---|---|---|---|
Graphite | 224 | 99.8 | 4 C/200/98.2 | [ |
PG-SPS | 1 302 | 60.2 | 10/1 000/33.2 | [ |
BP-G/PANI | 1 650 | 76 | 13/2 000/26.7 | [ |
Table 1 Ultrafast charging materials and their performance comparison
Active materials | First cycle reversible specific capacity/(mA·h·g-1) | Initial coulomb efficiency/% | Ampere density/(A·g-1)/number of cycles/capacity retention rate/% | Ref. |
---|---|---|---|---|
Graphite | 224 | 99.8 | 4 C/200/98.2 | [ |
PG-SPS | 1 302 | 60.2 | 10/1 000/33.2 | [ |
BP-G/PANI | 1 650 | 76 | 13/2 000/26.7 | [ |
Active materials | Optimization policy | Initial coulomb efficiency/% | First cycle reversible specific capacity/(mA·h·g-1) | Ampere density/(A·g-1)| | Ref. |
---|---|---|---|---|---|
L-BP-S/Super P | BP Nano-crystallization | 40.2 | 441.1 | 1.0/200/91.7 | [ |
BPQDS/N-graphene | BPQDS | 76.8 | 1 583 | 0.5/100/80.3 | [ |
BP/G/CNTs | Conductive frame | 73.4 | 1 375 | 2.0/3 000/40.0 | [ |
BPC | Conductive frame | 90.5 | 2 512.4 | 1.0 C/100/63.4 | [ |
BP-GO-PANI | Conductive coating | 38 | 884 | 5.0/2 000/108.4 | [ |
P/CNT-10% LiF | Pre-lithiation | 81 | 1 330 | 0.2/500/58.9 | [ |
Table 2 Comparison of battery performance under different optimization strategies
Active materials | Optimization policy | Initial coulomb efficiency/% | First cycle reversible specific capacity/(mA·h·g-1) | Ampere density/(A·g-1)| | Ref. |
---|---|---|---|---|---|
L-BP-S/Super P | BP Nano-crystallization | 40.2 | 441.1 | 1.0/200/91.7 | [ |
BPQDS/N-graphene | BPQDS | 76.8 | 1 583 | 0.5/100/80.3 | [ |
BP/G/CNTs | Conductive frame | 73.4 | 1 375 | 2.0/3 000/40.0 | [ |
BPC | Conductive frame | 90.5 | 2 512.4 | 1.0 C/100/63.4 | [ |
BP-GO-PANI | Conductive coating | 38 | 884 | 5.0/2 000/108.4 | [ |
P/CNT-10% LiF | Pre-lithiation | 81 | 1 330 | 0.2/500/58.9 | [ |
1 | SHEKHAR A R, PAREKH M H, POL V G. Worldwide ubiquitous utilization of lithium-ion batteries: what we have done, are doing, and could do safely once they are dead?[J]. J Power Sources, 2022, 523: 231015. |
2 | ARSHAD F, LIN J, MANURKAR N, et al. Life cycle assessment of lithium-ion batteries: a critical review[J]. Resour Conserv Recycl, 2022, 180: 106164. |
3 | LARCHER D, TARASCON J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nat Chem, 2015, 7(1): 19-29. |
4 | IEA. Net zero by 2050 a roadmap for the global energy sector[J]. IEA, 2021, www.iea.org. |
5 | LIN B, LI Z. Towards world's low carbon development: the role of clean energy[J]. Appl Energy, 2022, 307: 118160. |
6 | LI H S, GENG Y C, SHINWARI R, et al. Does renewable energy electricity and economic complexity index help to achieve carbon neutrality target of top exporting countries?[J]. J Environ Manage, 2021, 299: 113386. |
7 | JUAN L, SHEN Y, LI X, et al. BRICS carbon neutrality target: measuring the impact of electricity production from renewable energy sources and globalization[J]. J Environ Manage, 2021, 298: 113460. |
8 | AFSHAR S, MACEDO P, MOHAMED F, et al. Mobile charging stations for electric vehicles-a review[J]. Renew Sust Energy Rev, 2021, 152: 111654. |
9 | VERMA S, MISHRA S, GAUR A, et al. A comprehensive review on energy storage in hybrid electric vehicle[J]. J Traffic Transp Eng, 2021, 8(5): 621-637. |
10 | LAI X, CHEN Q, TANG X, et al. Critical review of life cycle assessment of lithium-ion batteries for electric vehicles: a lifespan perspective[J]. Etransportation, 2022, 12: 100169. |
11 | SPEIRS J, CONTESTABILE M, HOUARI Y, et al. The future of lithium availability for electric vehicle batteries[J]. Renew Sust Energ Rev, 2014, 35: 183-193. |
12 | ZENG X, LI M, ABD EL-HADY D, et al. Commercialization of lithium battery technologies for electric vehicles[J]. Adv Energy Mater, 2019, 9(27): 1900161. |
13 | CANO Z P, BANHAM D, YE S, et al. Batteries and fuel cells for emerging electric vehicle markets[J]. Nat Energy, 2018, 3(4): 279-289. |
14 | NZEREOGU P U, OMAH A D, EZEMA F I, et al. Anode materials for lithium-ion batteries: a review[J]. Appl Surface Sci Adv, 2022, 9: 100233. |
15 | QI W, SHAPTER J G, WU Q, et al. Nanostructured anode materials for lithium-ion batteries: principle, recent progress and future perspectives[J]. J Mater Chem A, 2017, 5(37): 19521-19540. |
16 | LU Y, YU L, LOU X W. Nanostructured conversion-type anode materials for advanced lithium-ion batteries[J]. Chem, 2018, 4(5): 972-996. |
17 | DAI J, LI J, ZHANG Q, et al. Co3S4@C@MoS2 microstructures fabricated from MOF template as advanced lithium-ion battery anode[J]. Mater Lett, 2019, 236: 483-486. |
18 | CHEN D, JI G, DING B, et al. Double transition-metal chalcogenide as a high-performance lithium-ion battery anode material[J]. Ind Eng Chem Res, 2014, 53(46): 17901-17908. |
19 | YANG Y, YUE Y, WANG L, et al. Facile synthesis of mesoporous TiNb2O7/C microspheres as long-life and high-power anodes for lithium-ion batteries[J]. Int J Hydrogen Energy, 2020, 45(22): 12583-12592. |
20 | AGHAMOHAMMADI H, HASSANZADEH N, ESLAMI-FARSANI R. A review study on titanium niobium oxide-based composite anodes for Li-ion batteries: synthesis, structure, and performance[J]. Ceram Int, 2021, 47(19): 26598-26619. |
21 | JIANG F, DU R, YAN X, et al. Ferroferric oxide nanoclusters decorated Ti3C2Tx nanosheets as high performance anode materials for lithium ion batteries[J]. Electrochim Acta, 2020, 329: 135146. |
22 | CABELLO M, GUCCIARDI E, HERRAN A, et al. Towards a high-power Si@graphite anode for lithium ion batteries through a wet ball milling process[J]. Molecules, 2020, 25(11): 2494-2508. |
23 | LV X, WEI W, HUANG B, et al. Achieving high energy density for lithium-ion battery anodes by Si/C nanostructure design[J]. J Mater Chem A, 2019, 7(5): 2165-2171. |
24 | WANG X, ZHANG Y, SHI Y, et al. Conducting polyaniline/poly(acrylic acid)/phytic acid multifunctional binders for Si anodes in lithium ion batteries[J]. Ionics, 2019, 25(11): 5323-5331. |
25 | LI P, HWANG J Y, SUN Y K. Nano/microstructured silicon-graphite composite anode for high-energy-density Li-ion battery[J]. ACS Nano, 2019, 13(2): 2624-2633. |
26 | BRIDGMAN P W. Two new modifications of phosphorus[J]. Dissociation Pressures Halides, Etc, 1914, 238: 344-363. |
27 | KHANDELWAL A, MANI K, KARIGERASI M H, et al. Phosphorene-the two-dimensional black phosphorous: properties, synthesis and applications[J]. Mater Sci Eng B-Adv, 2017, 221: 17-34. |
28 | FU Y, WEI Q, ZHANG G,et al. Advanced phosphorus-based materials for lithium/sodium-ion batteries: recent developments and future perspectives[J]. Adv Energy Mater, 2018, 8(13): 1702849. |
29 | WANG C, ZHANG L, ZHANG Z, et al. Layered materials for supercapacitors and batteries: applications and challenges[J]. Prog Mater Sci, 2021, 118: 100763. |
30 | LIU H, ZOU Y, TAO L, et al. Sandwiched thin-film anode of chemically bonded black phosphorus/graphene hybrid for lithium-ion battery[J]. Small, 2017, 13(33): 1700758. |
31 | ZHU J, XIAO G, ZUO X. Two-dimensional black phosphorus: an emerging anode material for lithium-ion batteries[J]. Nano-Micro Lett, 2020, 12(1): 120-145. |
32 | LATE D J. Liquid exfoliation of black phosphorus nanosheets and its application as humidity sensor[J]. Microporous Mesoporous Mater, 2016, 225: 494-503. |
33 | SUN Z, ZHAO Y, LI Z,et al. TiL4-coordinated black phosphorus quantum dots as an efficient contrast agent for in vivo photoacoustic imaging of cancer[J]. Small, 2017, 13(11): 1602896. |
34 | JIN H, HUANG Y, WANG C, et al. Phosphorus‐based anodes for fast charging lithium‐ion batteries: challenges and opportunities[J]. Small Sci, 2022, 2(6): 2200015. |
35 | SUN Y, WANG L, LI Y, et al. Design of red phosphorus nanostructured electrode for fast-charging lithium-ion batteries with high energy density[J]. Joule, 2019, 3(4): 1080-1093. |
36 | PARK M, ZHANG X C, CHUNG M D, et al. A review of conduction phenomena in Li-ion batteries[J]. J Power Sources, 2010, 195(24): 7904-7929. |
37 | KIM Y O, PARK S M. Intercalation mechanism of lithium ions into graphite layers studied by nuclear magnetic resonance and impedance experiments[J]. J Electrochem Soc, 2001, 148(3): A194-A199. |
38 | BEHESHTI S H, JAVANBAKHT M, OMIDVAR H, et al. Development, retainment, and assessment of the graphite-electrolyte interphase in Li-ion batteries regarding the functionality of SEI-forming additives[J]. iScience, 2022, 25(3): 103862. |
39 | SUN S Y, YAO N, JIN C B, et al. The crucial role of electrode potential of a working anode in dictating the structural evolution of solid electrolyte interphase[J]. Angew Chem Int Ed, 2022, 61(42): 8743. |
40 | LI L, ZHANG D, DENG J, et al. Carbon-based materials for fast charging lithium-ion batteries[J]. Carbon, 2021, 183: 721-734. |
41 | QI W, BEN L, YU H, et al. Improving the electrochemical cycling performance of anode materials via facile in situ surface deposition of a solid electrolyte layer[J]. J Power Sources, 2019, 424: 150-157. |
42 | JIANG L L, YAN C, YAO Y X, et al. Inhibiting solvent co-intercalation in a graphite anode by a localized high-concentration electrolyte in fast-charging batteries[J]. Angew Chem Int Ed, 2021, 60(7): 3402-3406. |
43 | LI P, KIM H, MYUNG S T, et al. Diverting exploration of silicon anode into practical way: a review focused on silicon-graphite composite for lithium ion batteries[J]. Energy Storage Mater, 2021, 35: 550-576. |
44 | SON Y, SIM S, MA H, et al. Exploring critical factors affecting strain distribution in 1D silicon-based nanostructures for lithium-ion battery anodes[J]. Adv Mater, 2018, 30(15): e1705430. |
45 | LIMTHONGKUL P, JANG Y I, DUDNEY N J, et al. Electrochemically-driven solid-state amorphization in lithium-metal anodes[J]. J Power Sources, 2003, 119/120/121: 604-609. |
46 | MOON J, LEE B, CHO M, et al. Ab initio and kinetic Monte Carlo simulation study of lithiation in crystalline and amorphous silicon[J]. J Power Sources, 2014, 272: 1010-1017. |
47 | LIU X H, ZHANG L Q, ZHONG L, et al. Ultrafast electrochemical lithiation of individual Si nanowire anodes[J]. Nano Lett, 2011, 11(6): 2251-2258. |
48 | GHASSEMI H, AU M, CHEN N, et al. In situ electrochemical lithiation/delithiation observation of individual amorphous Si nanorods[J]. ACS Nano, 2011, 5(10): 7805-7811. |
49 | WANG C M, LI X, WANG Z,et al. In situ TEM investigation of congruent phase transition and structural evolution of nanostructured silicon/carbon anode for lithium ion batteries[J]. Nano Lett, 2012, 12(3): 1624-1632. |
50 | GU M, WANG Z, CONNELL J G, et al. Electronic origin for the phase transition from amorphous LixSi to crystalline Li15Si4[J]. ACS Nano, 2013, 7(7): 6303-6309. |
51 | WANG Z, GU M, ZHOU Y, et al. Electron-rich driven electrochemical solid-state amorphization in Li-Si alloys[J]. Nano Lett, 2013, 13(9): 4511-4516. |
52 | CHEVRIER V L, DAHN H M, DAHN J R. Activation energies of crystallization events in electrochemically lithiated silicon[J]. J Electrochem Soc, 2011, 158: A1207. |
53 | CHAE S, CHOI S H, KIM N, et al. Integration of graphite and silicon anodes for the commercialization of high-energy lithium-ion batteries[J]. J Electrochem Soc, 2020, 59(1): 110-135. |
54 | CHAN C K, PENG H, LIU G,et al. High-performance lithium battery anodes using silicon nanowires[J]. Nat Nanotechnol, 2008, 3(1): 31-35. |
55 | SHENOY V B, JOHARI P, QI Y. Elastic softening of amorphous and crystalline Li-Si phases with increasing Li concentration: a first-principles study[J]. J Power Sources, 2010, 195(19): 6825-6830. |
56 | MOON J, CHO K, CHO M. Ab-initio study of silicon and tin as a negative electrode materials for lithium-ion batteries[J]. Int J Precis Eng Man, 2012, 13(7): 1191-1197. |
57 | SONG M S, CHANG G, JUNG D W, et al. Strategy for boosting Li-ion current in silicon nanoparticles[J]. ACS Energy Lett, 2018, 3(9): 2252-2258. |
58 | SUN L, XIE J, JIN Z. Different dimensional nanostructured silicon materials: from synthesis methodology to application in high‐energy lithium‐ion batteries[J]. Energy Technol, 2019, 7(11): 1900962. |
59 | AN Y, TIAN Y, WEI C, et al. Scalable and physical synthesis of 2D silicon from bulk layered alloy for lithium-ion batteries and lithium metal batteries[J]. ACS Nano, 2019, 13(12): 13690-13701. |
60 | AN Y, TIAN Y, WEI H,et al. Porosity‐ and graphitization‐controlled fabrication of nanoporous silicon@carbon for lithium storage and its conjugation with MXene for lithium‐metal anode[J]. Adv Funct Mater, 2019, 30(9): 1908721. |
61 | GE M, RONG J, FANG X,et al. Porous doped silicon nanowires for lithium ion battery anode with long cycle life[J]. Nano Lett, 2012, 12(5): 2318-2323. |
62 | CHAN C K, PENG H, LIU G,et al. High-performance lithium battery anodes using silicon nanowires[J]. Nat Nanotechnol, 2008, 3(1): 31-35. |
63 | HEMBRAM K, JUNG H, YEO B C, et al. A comparative first-principles study of the lithiation, sodiation, and magnesiation of black phosphorus for Li-, Na-, and Mg-ion batteries[J]. Phys Chem Chem Phys, 2016, 18(31): 21391-21397. |
64 | HEMBRARN K, JUNG H, YEO B C, et al. Unraveling the atomistic sodiation mechanism of black phosphorus for sodium ion batteries by first-principles calculations[J]. J Phys Chem C, 2015, 119(27): 15041-15046. |
65 | JIN H, WANG H, QI Z, et al. A black phosphorus-graphite composite anode for Li-/Na-/K-ion batteries[J]. Angew Chem Int Ed, 2020, 59(6): 2318-2322. |
66 | JUNG S C, HAN Y K. Thermodynamic and kinetic origins of lithiation-induced amorphous-to-crystalline phase transition of phosphorus[J]. J Phys Chem C, 2015, 119(22): 12130-12137. |
67 | ZHANG Y, WANG H, LUO Z, et al. An air-stable densely packed phosphorene-graphene composite toward advanced lithium storage properties[J]. Adv Energy Mater, 2016, 6(12): 1600453. |
68 | JIN H, XIN S, CHUANG C, et al. Black phosphorus composites with engineered interfaces for high-rate high-capacity lithium storage[J]. Science, 2020, 370(6513): 192-197. |
69 | ZHENG W, LEE J, GAO Z W, et al. Laser-assisted ultrafast exfoliation of black phosphorus in liquid with tunable thickness for Li-ion batteries[J]. Adv Energy Mater, 2020, 10(31): 1903490. |
70 | PAN L, ZHU X D, SUNG K N, et al. Molecular level distribution of black phosphorus quantum dots on nitrogen doped graphene nanosheets for superior lithium storage[J]. Nano Energy, 2016, 30: 347-354. |
71 | WANG J, LIU W, WANG C. Superior rate and long-lived performance of few-layered black phosphorus-based hybrid anode for lithium-ion batteries[J]. Electrochim Acta, 2022, 403: 228664. |
72 | SUN J, ZHENG G, LEE H W,et al. Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes[J]. Nano Lett, 2014, 14(8): 4573-4580. |
73 | ZHANG Y, WANG L, XU H,et al. 3D chemical cross‐linking structure of blackphosphorus@CNTs hybrid as a promising anode material for lithium ion batteries[J]. Adv Funct Mater, 2020, 30(12): 1909372. |
74 | ZHOU S, LI J, FU L, et al. Black phosphorus/hollow porous carbon for high rate performance lithium-ion battery[J]. ChemElectroChem, 2020, 7(9): 2184-2189. |
75 | SHIN H, ZHANG J, LU W. Material structure and chemical bond effect on the electrochemical performance of black phosphorus-graphite composite anodes[J]. Electrochim Acta, 2019, 309: 264-273. |
76 | LI M, LI W, HU Y,et al. New insights into the high-performance black phosphorus anode for lithium-ion batteries[J]. Adv Mater, 2021, 33(35): 2101259. |
77 | AMINE R, DAALI A, ZHOU X, et al. A practical phosphorus-based anode material for high-energy lithium-ion batteries[J]. Nano Energy, 2020, 74: 104849-104858. |
78 | HAN M, ZHANG S, CAO Y, et al. A one-for-all strategy of polyimide coating layer for resolving the comprehensive issues of phosphorus anode[J]. J Energy Chem, 2022, 70: 276-282. |
79 | SUN J, LIU C, WANG H, et al. Core-Shell structure of a polypyrrole-coated phosphorus/carbon nanotube anode for high-performance lithium-ion batteries[J]. ACS Appl Energy Mater, 2021, 4(4): 4112-4118. |
80 | LI X, HAN X, LIU R, et al. Tannic acid-polypyrrole multifunctional coating layer enhancing the interface effect and efficient Li-ion transport of a phosphorus anode[J]. Nanoscale, 2022, 14(9): 3625-3631. |
81 | HAGHIGHAT-SHISHAVAN S, NAZARIAN-SAMANI M, NAZARIAN-SAMANI M, et al. Strong, persistent superficial oxidation-assisted chemical bonding of black phosphorus with multiwall carbon nanotubes for high-capacity ultradurable storage of lithium and sodium[J]. J Mater Chem A, 2018, 6(21): 10121-10134. |
82 | ZHAO Y, WANG H, HUANG H, et al. Surface coordination of black phosphorus for robust air and water stability[J]. Angew Chem Int Ed, 2016, 55(16): 5003-5007. |
83 | JIA C, ZHAO L, CUI M, et al. Surface coordination modification and electrical properties of few-layer black phosphorus exfoliated by the liquid-phase method[J]. J Alloys Compd, 2019, 799: 99-107. |
84 | YI Y, YU X F, ZHOU W, et al. Two-dimensional black phosphorus: synthesis, modification, properties, and applications[J]. Mater Sci Eng, 2017, 120: 1-33. |
85 | YANG B, WAN B, ZHOU Q, et al. Te-doped black phosphorus field-effect transistors[J]. Adv Mater, 2016, 28(42): 201603723. |
86 | GUO Z, CHEN S, WANG Z, et al. Metal-ion-modified black phosphorus with enhanced stability and transistor performance[J]. Adv Mater, 2017, 29(42): 1703811. |
87 | DOGANOV R A, O'FARRELL E C T, KOENIG S P, et al. Transport properties of pristine few-layer black phosphorus by van der Waals passivation in an inert atmosphere[J]. Nat Commun, 2015, 6: 7647-7654. |
88 | RYDER C R, WOOD J D, WELLS S A, et al. Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry[J]. Nat Chem, 2016, 8(6): 597-602. |
89 | ABELLAN G, LLORET V, MUNDLOCH U, et al. Noncovalent functionalization of black phosphorus[J]. Angew Chem Int Ed, 2016, 55(47): 14557-14562. |
90 | TOFAN D, SAKAZAKI Y, MITRA K L W, et al. Surface modification of black phosphorus with group 13 lewis acids for ambient protection and electronic tuning[J]. Angew Chem Int Ed, 2021, 60(15): 8329-8336. |
91 | VAN DRUENEN M, DAVITT F, COLLINS T, et al. Covalent functionalization of few-layer black phosphorus using iodonium salts and comparison to diazonium modified black phosphorus[J]. Chem Mater, 2018, 30(14): 4667-4674. |
92 | HAN X, SUN J. Improved fast-charging performances of phosphorus electrodes using the intrinsically flame-retardant LiFSI based electrolyte[J]. J Power Sources, 2020, 474: 228664. |
93 | YUAN S, WENG S, WANG F,et al. Revisiting the designing criteria of advanced solid electrolyte interphase on lithium metal anode under practical condition[J]. Nano Energy, 2021, 83: 105847. |
94 | LEI W, LIU Y, JIAO X,et al. Improvement of cycling phosphorus-based anode with LiF-rich solid electrolyte interphase for reversible lithium storage[J]. ACS Appl Energy Mater, 2019, 2(4): 2699-2707. |
95 | LIU C, HAN M, CAO Y,et al. Unlocking the dissolution mechanism of phosphorus anode for lithium-ion batteries[J]. Energy Storage Mater, 2021, 37: 417-423. |
96 | JARVIS C R, LAIN M J, YAKOVLEVA M V, et al. A prelithiated carbon anode for lithium-ion battery applications[J]. J Power Sources, 2006, 162(2): 800-802. |
97 | WANG Z H, FU Y B, ZHANG Z C, et al. Application of Stabilized Lithium Metal Powder (SLMP (R)) in graphite anode-a high efficient prelithiation method for lithium-ion batteries[J]. J Power Sources, 2014, 260: 57-61. |
98 | HUANG Z, DENG Z, ZHONG Y, et al. Progress and challenges of prelithiation technology for lithium-ion battery[J]. Carbon Energy, 2022, 4: 1107-1132. |
[1] | Xue-Jian SHI, Wan-Qiang LIU, Chun-Li WANG, Yong CHENG, Li-Min WANG. Research Progress of Sb-based Anode Materials for Potassium Ion Batteries [J]. Chinese Journal of Applied Chemistry, 2023, 40(2): 210-228. |
[2] | Fu-Yang WANG, Wei-Ming SONG, Li SUN, Jian FENG, Jun YE, Zhi-Qi YANG. Controllable Construction of Porous Nanocube FeSe2/Graphene Composite for Efficient Na⁃Ion Storage [J]. Chinese Journal of Applied Chemistry, 2022, 39(5): 779-786. |
[3] | Lin-Hu SONG, Shi-You LI, Jie WANG, Jing-Jing ZHANG, Ning-Shuang ZHANG, Dong-Ni ZHAO, Fei XU. Research Progress of Additives for Acid and Water Removal in Electrolyte of Lithium Ion Battery [J]. Chinese Journal of Applied Chemistry, 2022, 39(5): 697-706. |
[4] | Yu-Le WANG, Ke-Li YANG, Yan-Fang GAO. Preparation and Electrochemical Properties of Molybdenum Carbide Modified Silica [J]. Chinese Journal of Applied Chemistry, 2022, 39(11): 1716-1725. |
[5] | Ying ZHAO, Yi-Jia SHAO, Luo-Qian LI, Jian-Wei REN, Shi-Jun LIAO. Research Progress on the Degradation Mechanism and Cycle Stability Improvement of Lithium-Rich Cathode Materials [J]. Chinese Journal of Applied Chemistry, 2022, 39(02): 205-222. |
[6] | WANG Jinying, QU Jiangying, LI Jielan, TANG Zhanlei, ZANG Yunhao, WANG Tao, GU Jianfeng, ZHOU Gang, GAO Feng. Two-Step Coating Synthesis of Silicon/Carbon Composite Based on Coal Tar Pitch and Its Lithium Battery Performance [J]. Chinese Journal of Applied Chemistry, 2020, 37(5): 562-569. |
[7] | HU Chen,JIN Yi,ZHU Shaoqing,XU Ye,SHUI Jianglan. Methods for Improving Low-Temperature Performance of Lithium Iron Phosphate Based Li-Ion Battery [J]. Chinese Journal of Applied Chemistry, 2020, 37(4): 380-386. |
[8] | LIU Lixin, DONG Jianhong, ZHANG Guanghui, ZHU Luyi, WANG Xinqiang, XU Dong, CHOW Yuktak. Preparation and Properties of Polyvinylidene Fluoride@Diatomite Fiber Membranes by Eletrospinning as Separator of Lithium-Ion Batteries [J]. Chinese Journal of Applied Chemistry, 2020, 37(12): 1441-1446. |
[9] | ZUO Zicheng,LI Yuliang. Applications of Graphdiyne in Li+/Na+ Battery Anodes [J]. Chinese Journal of Applied Chemistry, 2018, 35(9): 1057-1066. |
[10] | WANG Huanhuan,LU Songtao,QIN Wei,WU Xiaohong. Preparation and Electrochemical Performance of MoS2@Co9S8 Yolk-Shell Nanocomposites [J]. Chinese Journal of Applied Chemistry, 2018, 35(8): 956-962. |
[11] | Zhaomin WANG, Zheng YI, Ming ZHONG, Yong CHENG, Limin WANG. Research Progress of Antimony-Based Anode Materials for Lithium Ion Batteries [J]. Chinese Journal of Applied Chemistry, 2018, 35(7): 745-755. |
[12] | LI Bao,LIU Xiaoyang,LI Fan,Esmail Husein M. Salhabib,ZHAO Jilu,WANG Bao. Preparation and Performances of Nano-Micro Structural Ferric Oxide from Flower-Like Iron Alkoxides [J]. Chinese Journal of Applied Chemistry, 2018, 35(3): 356-365. |
[13] | CHEN Guanghai, BAI Ying, WU Feng, WU Chuan. Two-Dimensional Layered Dicalcium Nitride as Anode Material for Sodium Ion Batteries [J]. Chinese Journal of Applied Chemistry, 2018, 35(3): 366-368. |
[14] | CHEN Guanghai, BAI Ying, WU Feng, WU Chuan. Two-Dimensional Layered Dicalcium Nitride as Anode Material for Sodium Ion Batteries [J]. Chinese Journal of Applied Chemistry, 2018, 35(3): 0-0. |
[15] | TAN Jiang, TAN Xi, KANG Wenbin, ZHANG Chuhong. Two Dimensional Molybdenum Disulfide/Graphite Composites Prepared by Direct All-Solid-State Ball-Milling for Lithium-Ion Batteries [J]. Chinese Journal of Applied Chemistry, 2017, 34(7): 810-817. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||