1 |
KUBOTA K, DAHBI M, HOSAKA T, et al. Towards K-ion and Na-ion batteries as “beyond Li-ion”[J]. Chem Rec, 2018, 18: 459-479.
|
2 |
DENG J, LUO W B, CHOU S L, et al. Sodium‐ion batteries: from academic research to practical commercialization[J]. Adv Energy Mater, 2018, 8(4): 1701428
|
3 |
BYEONGYONG L, MYEONGJIN K, SUNKYUNG K, et al. High capacity adsorption-dominated potassium and sodium ion storage in activated crumpled graphene[J]. Adv Energy Mater, 2020, 10(17): 2070076.
|
4 |
MAHMOOD A, LI S, ALI Z, et al. Ultrafast sodium/potassium ion intercalation into hierarchically porous thin carbon shells[J]. Adv Mater, 2018, 31(2): 1805430.
|
5 |
XIE X C, HUANG K J, WU X, et al. Binding hierarchical MoSe2 on MOF-derived N-doped carbon dodecahedron for fast and durable sodium-ion storage[J]. Carbon, 2020, 169: 1-8.
|
6 |
PAN Y L, CHENG X D, VINCENT S, et al. Cagelike CoSe2@N-doped carbon aerogels with pseudocapacitive properties as advanced materials for sodium-ion batteries with excellent rate performance and cyclic stability[J]. ACS Appl Mater Interfaces, 2020, 12(30): 33621-33630.
|
7 |
PAN Q C, ZHANG M, ZHANG L X, et al. FeSe2@C microrods as a superior long-life and high-rate anode for sodium ion batteries[J]. ACS Nano, 2020, 14, 12: 17683-17692.
|
8 |
DONG C F, XU L Q, JIANG F Y, et al. Willow-leaf-like ZnSe@N-doped carbon nanoarchitecture as a stable and high -performance anode material for sodium‐ion and potassium-ion batteries[J]. Small, 2020, 16(47): 2004580.
|
9 |
LUO M, YU H, HU F, et al. Metal selenides for high performance sodium ion batteries[J]. Chem Eng J, 2019, 380: 122557.
|
10 |
PARK J S, YANG S, KANG Y C. Prussian blue analogue nanocubes with hollow interior and porous walls encapsulated within reduced graphene oxide nanosheets and their sodium-ion storage performances[J]. Chem Eng J, 2020, 393: 124606.
|
11 |
HUANG Y X, WANG Z H, CHEN R J, et al. Toward rapid-charging sodium-ion batteries using hybrid-phase molybdenum sulfide selenide-based anodes[J]. Adv Mater, 2020, 32(40): 2003534.
|
12 |
WU X, XU H, SHEN Y, et al. Treatment of graphite felt by modified Hummers method for the positive electrode of vanadium redox flow battery[J]. Electrochim Acta, 2014, 138(25): 264-269.
|
13 |
FENG J, LUO S H, YAN S X, et al. Hierarchically nitrogen-doped carbon wrapped Ni0.6Fe0.4Se2 binary-metal selenide nanocubes with extraordinary rate performance and high pseudocapacitive contribution for sodium-ion anodes[J]. J Mater Chem A, 2021, 9: 1610-1622.
|
14 |
CHEN Y, SHAO J, QU Q T, et al. Hollow structured carbon@FeSe nanocomposite as a promising anode material for Li-ion batteries[J]. ChemElectroChem, 2019, 6, 5: 1393-1399.
|
15 |
CHEN H C, CHEN S, SHU K Y, et al. Bimetallic nickel cobalt selenides: a new kind of electroactive material for high-power energy storage[J]. J Mater Chem A, 2015, 3: 23653-23659 .
|
16 |
XIAO Y, HWANG J, BELHAROUAK I, et al. Na storage capability investigation of a carbon nanotube-encapsulated Fe1- xS composite[J]. ACS Energy Lett, 2017, 2: 364-372.
|
17 |
FAN H S, YU H, ZHANG Y F, et al. 1D to 3D hierarchical iron selenide hollow nanocubes assembled from FeSe2@C core-shell nanorods for advanced sodium ion batteries[J]. Energy Storage Mater, 2018(10): 48-55.
|
18 |
HU Z, LIU Q N, CHOU S L, et al. Advances and challenges in metal sulfides/selenides for next-generation rechargeable sodium-ion batteries[J]. Adv Mater, 2017, 29(48): 1700606.
|
19 |
GE P, HOU H S, JI X B, et al. Tailoring rod-like FeSe2 coated with nitrogen-doped carbon for high-performance sodium storage[J]. Adv Funct Mater, 2018, 28(30): 1801765.
|
20 |
LIU H, JIA M Q, SUN N, et al. Nitrogen-rich mesoporous carbon as anode material for high-performance sodium-ion batteries[J]. ACS Appl Mater Interfaces, 2015, 7(49): 27124-27130.
|
21 |
LI Q, LI L, OWUSU K A, et al. Self-adaptive mesoporous CoS@alveolus-like carbon yolk-shell microsphere for alkali cations storage[J]. Nano Energy, 2017, 41: 109-116.
|
22 |
JIA M, JIN Y, ZHAO C, et al. High electrochemical sodium storage performance of ZnSe/CoSe@N-doped porous carbon synthesized by the in⁃situ selenization of ZIF-8/67 polyhedron[J]. Appl Surf Sci, 2020, 15(518): 146259.
|
23 |
SHI N X, CHU Y T, XI B J, et al. Sandwich structures constructed by ZnSe⊂N-C@MoSe2 located in graphene for efficient sodium storage[J]. Adv Energy Mater, 2020, 10, 14: 2002298.
|
24 |
MENG Y, WANG Y, ZHANG Z, et al. A phytic acid derived LiMn0.5Fe0.5PO4/carbon composite of high energy density for lithium rechargeable batteries[J]. Sci Rep, 2019, 9(1): 6665.
|
25 |
CHO J, LEE J, KANG Y. Graphitic carbon-coated FeSe2 hollow nanosphere-decorated reduced graphene oxide hybrid nanofibers as an efficient anode material for sodium ion batteries[J]. Sci Rep, 2016, 6: 23699.
|