Chinese Journal of Applied Chemistry ›› 2023, Vol. 40 ›› Issue (4): 562-570.DOI: 10.19894/j.issn.1000-0518.220338
• Full Papers • Previous Articles Next Articles
Jin-Li ZHAO1,2, Zong-Ren YU1,2, Bo-Min SU1,2()
Received:
2022-10-17
Accepted:
2023-02-20
Published:
2023-04-01
Online:
2023-04-17
Contact:
Bo-Min SU
About author:
suboming@hotmail.comSupported by:
CLC Number:
Jin-Li ZHAO, Zong-Ren YU, Bo-Min SU. Analysis of Egg Whites from Burial Murals by Pyrolysis-Gas Chromatography/Mass Spectrometry[J]. Chinese Journal of Applied Chemistry, 2023, 40(4): 562-570.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.220338
Peak number | Retention time/min | m/z | Characteristic fragments (characteristic mass spectrometry ions) | Formula |
---|---|---|---|---|
1 | 1.830 | 55 | Propanenitrile (54.0, 53.0, 52.0, 51.0) | C3H5N |
2 | 2.424 | 69 | 1H-Pyrrole, 2,5-dihydro-(69.0, 68.0, 67.0, 60.0, 54.0) | C4H7N |
3 | 2.782 | 83 | Butanenitrile, 2-methyl-(71.0, 56.0, 55.0, 54.0, 51..0) | C5H9N |
4 | 3.083 | 79 | Pyridine (79.0, 78.0, 52.0, 51.0) | C5H5N |
5 | 3.178 | 67 | Pyrrole (67.0, 66.0, 52.0) | C4H5N |
6 | 3.317 | 92 | Toluene (92.0, 91.0, 89.0, 65.0, 63.0) | C7H8 |
7 | 4.518 | 97 | Isoamyl cyanide (96.0, 80.0, 57.0, 55.0, 54.0) | C6H11N |
8 | 4.920 | 106 | Ethylbenzene (106.0, 91.0, 77.0, 65.0) | C8H10 |
9 | 5.550 | 104 | Styrene (104.0, 78.0, 63.0, 59.0, 51.0) | C8H8 |
10 | 8.061 | 94 | Phenol (94.0, 91.0, 66.0, 55.0, 55.0) | C6H6O |
11 | 8.808 | 109 | 1H-Pyrrole, 2,3,5-trimethyl-(108.0, 94.0, 83.0, 67.0, 59.0) | C7H11N |
12 | 8.977 | 118 | Benzene, 2-propenyl-(117.0, 115.0, 94.0, 91.0, 83.0) | C9H10 |
13 | 9.248 | 113 | Piperidine, 2,3-dimethyl-(112.0, 98.0, 94.0, 84.0, 71.0) | C7H15N |
14 | 10.624 | 107 | p-Cresol (107.0, 94.0, 90.0, 77.0, 68.0) | C7H8O |
15 | 12.220 | 117 | Benzyl nitrile (117.0, 90.0, 83.0, 77.0, 68.0) | C8H7N |
16 | 15.069 | 131 | Benzenepropanenitrile (131.0, 120.0, 91.0, 77.0, 65.0) | C9H9N |
17 | 16.599 | 117 | Indole (117.0, 98.0, 90.0, 63.0, 58.0) | C8H7N |
18 | 18.525 | 168 | 1,4'-Bipiperidine (124.0, 112.0, 97.0, 83.0, 56.0) | C10H20N2 |
19 | 19.008 | 131 | Indole, 3-methyl-(130..0, 103.0, 84.0, 77.0, 64.0) | C9H9N |
20 | 32.956 | 210 | Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl)- (154.0, 125.0, 86.0, 70.0, 55.0) | C11H18N2O2 |
21 | 34.231 | 168 | 9H-Pyrrolo[3.4-b]indole (168.0, 151.0, 138.0, 123.0, 91.0) | C11H8N2 |
Table 1 Py-GC/MS results of egg white at 600 ℃
Peak number | Retention time/min | m/z | Characteristic fragments (characteristic mass spectrometry ions) | Formula |
---|---|---|---|---|
1 | 1.830 | 55 | Propanenitrile (54.0, 53.0, 52.0, 51.0) | C3H5N |
2 | 2.424 | 69 | 1H-Pyrrole, 2,5-dihydro-(69.0, 68.0, 67.0, 60.0, 54.0) | C4H7N |
3 | 2.782 | 83 | Butanenitrile, 2-methyl-(71.0, 56.0, 55.0, 54.0, 51..0) | C5H9N |
4 | 3.083 | 79 | Pyridine (79.0, 78.0, 52.0, 51.0) | C5H5N |
5 | 3.178 | 67 | Pyrrole (67.0, 66.0, 52.0) | C4H5N |
6 | 3.317 | 92 | Toluene (92.0, 91.0, 89.0, 65.0, 63.0) | C7H8 |
7 | 4.518 | 97 | Isoamyl cyanide (96.0, 80.0, 57.0, 55.0, 54.0) | C6H11N |
8 | 4.920 | 106 | Ethylbenzene (106.0, 91.0, 77.0, 65.0) | C8H10 |
9 | 5.550 | 104 | Styrene (104.0, 78.0, 63.0, 59.0, 51.0) | C8H8 |
10 | 8.061 | 94 | Phenol (94.0, 91.0, 66.0, 55.0, 55.0) | C6H6O |
11 | 8.808 | 109 | 1H-Pyrrole, 2,3,5-trimethyl-(108.0, 94.0, 83.0, 67.0, 59.0) | C7H11N |
12 | 8.977 | 118 | Benzene, 2-propenyl-(117.0, 115.0, 94.0, 91.0, 83.0) | C9H10 |
13 | 9.248 | 113 | Piperidine, 2,3-dimethyl-(112.0, 98.0, 94.0, 84.0, 71.0) | C7H15N |
14 | 10.624 | 107 | p-Cresol (107.0, 94.0, 90.0, 77.0, 68.0) | C7H8O |
15 | 12.220 | 117 | Benzyl nitrile (117.0, 90.0, 83.0, 77.0, 68.0) | C8H7N |
16 | 15.069 | 131 | Benzenepropanenitrile (131.0, 120.0, 91.0, 77.0, 65.0) | C9H9N |
17 | 16.599 | 117 | Indole (117.0, 98.0, 90.0, 63.0, 58.0) | C8H7N |
18 | 18.525 | 168 | 1,4'-Bipiperidine (124.0, 112.0, 97.0, 83.0, 56.0) | C10H20N2 |
19 | 19.008 | 131 | Indole, 3-methyl-(130..0, 103.0, 84.0, 77.0, 64.0) | C9H9N |
20 | 32.956 | 210 | Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl)- (154.0, 125.0, 86.0, 70.0, 55.0) | C11H18N2O2 |
21 | 34.231 | 168 | 9H-Pyrrolo[3.4-b]indole (168.0, 151.0, 138.0, 123.0, 91.0) | C11H8N2 |
Peak number | Egg white | Calcite | Lead tetroxide | Ochre | Cinnabar | Azurite | Mineral green | Orpiment | Realgar |
---|---|---|---|---|---|---|---|---|---|
1 | 8.25 | 6.10 | 4.12 | 13.07 | 6.96 | 13.78 | 8.90 | 16.52 | 4.60 |
2 | 6.15 | 4.28 | 6.34 | 7.44 | 5.06 | 10.42 | 8.37 | 12.92 | 6.07 |
3 | 6.10 | 5.93 | 7.19 | 7.07 | - | 8.27 | 8.41 | 10.08 | - |
4 | 3.95 | 2.62 | 4.85 | 5.47 | 6.99 | 12.12 | 10.65 | 13.41 | 7.44 |
5 | 5.19 | 4.31 | 5.86 | 7.29 | 8.29 | 8.68 | 8.93 | 12.43 | 5.38 |
6 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
7 | 15.41 | 14.67 | 20.08 | 19.43 | 14.05 | 20.76 | 19.91 | 22.26 | 16.89 |
8 | 12.29 | 15.44 | 18.99 | 16.96 | 14.43 | 20.92 | 19.81 | 22.26 | 17.86 |
9 | 14.02 | 18.45 | 16.09 | 16.08 | 12.07 | 18.73 | 17.01 | 18.55 | 14.62 |
10 | 33.55 | 41.12 | 45.62 | 40.53 | 43.90 | 40.88 | 41.26 | 37.01 | 33.20 |
11 | 8.93 | - | - | - | - | - | - | - | - |
12 | 10.01 | 12.43 | 24.99 | 20.87 | 7.70 | 19.24 | 23.64 | - | - |
13 | 6.01 | 2.75 | 4.66 | 3.51 | - | - | - | - | - |
14 | 32.02 | 49.44 | 46.40 | 47.28 | 34.95 | 56.10 | 48.58 | 45.21 | 24.40 |
15 | 15.71 | 29.02 | 30.91 | 29.65 | 29.72 | 27.55 | 28.56 | 36.69 | 32.41 |
16 | 26.11 | 36.14 | 43.90 | 37.10 | 29.85 | 38.73 | 36.56 | 41.84 | 16.23 |
17 | 50.17 | 63.09 | 56.79 | 58.59 | 60.81 | 68.23 | 59.25 | 63.77 | 48.63 |
18 | 9.62 | 13.20 | 18.04 | 15.37 | 16.01 | - | - | 16.30 | 10.94 |
19 | 19.24 | 28.98 | 24.40 | 23.43 | 30.60 | 25.76 | 27.16 | 31.52 | 21.56 |
20 | 32.35 | 27.36 | 32.21 | 26.12 | 30.70 | 27.66 | 33.47 | 30.13 | 30.44 |
21 | 16.01 | 15.89 | 33.52 | 13.31 | 17.28 | 39.13 | 16.72 | 18.37 | 22.06 |
Fig.2 Relative percentage of egg white cracking products added with different pigments
Peak number | Egg white | Calcite | Lead tetroxide | Ochre | Cinnabar | Azurite | Mineral green | Orpiment | Realgar |
---|---|---|---|---|---|---|---|---|---|
1 | 8.25 | 6.10 | 4.12 | 13.07 | 6.96 | 13.78 | 8.90 | 16.52 | 4.60 |
2 | 6.15 | 4.28 | 6.34 | 7.44 | 5.06 | 10.42 | 8.37 | 12.92 | 6.07 |
3 | 6.10 | 5.93 | 7.19 | 7.07 | - | 8.27 | 8.41 | 10.08 | - |
4 | 3.95 | 2.62 | 4.85 | 5.47 | 6.99 | 12.12 | 10.65 | 13.41 | 7.44 |
5 | 5.19 | 4.31 | 5.86 | 7.29 | 8.29 | 8.68 | 8.93 | 12.43 | 5.38 |
6 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
7 | 15.41 | 14.67 | 20.08 | 19.43 | 14.05 | 20.76 | 19.91 | 22.26 | 16.89 |
8 | 12.29 | 15.44 | 18.99 | 16.96 | 14.43 | 20.92 | 19.81 | 22.26 | 17.86 |
9 | 14.02 | 18.45 | 16.09 | 16.08 | 12.07 | 18.73 | 17.01 | 18.55 | 14.62 |
10 | 33.55 | 41.12 | 45.62 | 40.53 | 43.90 | 40.88 | 41.26 | 37.01 | 33.20 |
11 | 8.93 | - | - | - | - | - | - | - | - |
12 | 10.01 | 12.43 | 24.99 | 20.87 | 7.70 | 19.24 | 23.64 | - | - |
13 | 6.01 | 2.75 | 4.66 | 3.51 | - | - | - | - | - |
14 | 32.02 | 49.44 | 46.40 | 47.28 | 34.95 | 56.10 | 48.58 | 45.21 | 24.40 |
15 | 15.71 | 29.02 | 30.91 | 29.65 | 29.72 | 27.55 | 28.56 | 36.69 | 32.41 |
16 | 26.11 | 36.14 | 43.90 | 37.10 | 29.85 | 38.73 | 36.56 | 41.84 | 16.23 |
17 | 50.17 | 63.09 | 56.79 | 58.59 | 60.81 | 68.23 | 59.25 | 63.77 | 48.63 |
18 | 9.62 | 13.20 | 18.04 | 15.37 | 16.01 | - | - | 16.30 | 10.94 |
19 | 19.24 | 28.98 | 24.40 | 23.43 | 30.60 | 25.76 | 27.16 | 31.52 | 21.56 |
20 | 32.35 | 27.36 | 32.21 | 26.12 | 30.70 | 27.66 | 33.47 | 30.13 | 30.44 |
21 | 16.01 | 15.89 | 33.52 | 13.31 | 17.28 | 39.13 | 16.72 | 18.37 | 22.06 |
Peak numbe | Retention time/min | Characteristic fragments | Standard samples | A1 | A2 |
---|---|---|---|---|---|
1 | 1.83 | Propanenitrile | 8.25 | - | - |
2 | 2.42 | 1H-Pyrrole, 2,5-dihydro- | 6.15 | - | - |
3 | 2.78 | Butanenitrile, 2-methyl- | 6.10 | - | - |
4 | 3.08 | Pyridine | 3.95 | 12.73 | 11.60 |
5 | 3.17 | Pyrrole | 5.19 | 10.53 | 13.49 |
6 | 3.31 | Toluene | 100 | 100 | 100 |
7 | 4.51 | Isoamyl cyanide | 15.41 | 26.48 | 17.73 |
8 | 4.92 | Ethylbenzene | 12.29 | 13.87 | 17.46 |
9 | 5.55 | Styrene | 14.02 | 27.25 | 24.27 |
10 | 8.06 | Phenol | 33.55 | 4.18 | 5.79 |
11 | 8.80 | 1H-Pyrrole, 2,3,5-trimethyl- | 8.93 | - | - |
12 | 8.97 | Benzene, 2-propenyl- | 10.01 | 4.19 | - |
13 | 9.24 | Piperidine, 2,3-dimethyl- | 6.01 | - | - |
14 | 10.62 | p-Cresol | 32.02 | 8.01 | - |
15 | 12.22 | Benzyl nitrile | 15.71 | 12.17 | - |
16 | 15.06 | Benzenepropanenitrile | 26.11 | 10.71 | - |
17 | 16.59 | Indole | 50.17 | 18.30 | 22.80 |
18 | 18.52 | 1,4'-Bipiperidine | 9.62 | - | - |
19 | 19.00 | Indole, 3-methyl- | 19.24 | 15.77 | 4.22 |
20 | 32.95 | Pyrrolo[1,2-a]pyrazine-1,4-dione,hexahydro-3-(2-methylpropyl)- | 32.35 | 10.61 | 5.06 |
21 | 34.23 | 9H-Pyrrolo[3.4-b]indole | 16.01 | 3.65 | 12.71 |
Table 3 Results of egg white Py-GC/MS analysis in samples A1 and A2
Peak numbe | Retention time/min | Characteristic fragments | Standard samples | A1 | A2 |
---|---|---|---|---|---|
1 | 1.83 | Propanenitrile | 8.25 | - | - |
2 | 2.42 | 1H-Pyrrole, 2,5-dihydro- | 6.15 | - | - |
3 | 2.78 | Butanenitrile, 2-methyl- | 6.10 | - | - |
4 | 3.08 | Pyridine | 3.95 | 12.73 | 11.60 |
5 | 3.17 | Pyrrole | 5.19 | 10.53 | 13.49 |
6 | 3.31 | Toluene | 100 | 100 | 100 |
7 | 4.51 | Isoamyl cyanide | 15.41 | 26.48 | 17.73 |
8 | 4.92 | Ethylbenzene | 12.29 | 13.87 | 17.46 |
9 | 5.55 | Styrene | 14.02 | 27.25 | 24.27 |
10 | 8.06 | Phenol | 33.55 | 4.18 | 5.79 |
11 | 8.80 | 1H-Pyrrole, 2,3,5-trimethyl- | 8.93 | - | - |
12 | 8.97 | Benzene, 2-propenyl- | 10.01 | 4.19 | - |
13 | 9.24 | Piperidine, 2,3-dimethyl- | 6.01 | - | - |
14 | 10.62 | p-Cresol | 32.02 | 8.01 | - |
15 | 12.22 | Benzyl nitrile | 15.71 | 12.17 | - |
16 | 15.06 | Benzenepropanenitrile | 26.11 | 10.71 | - |
17 | 16.59 | Indole | 50.17 | 18.30 | 22.80 |
18 | 18.52 | 1,4'-Bipiperidine | 9.62 | - | - |
19 | 19.00 | Indole, 3-methyl- | 19.24 | 15.77 | 4.22 |
20 | 32.95 | Pyrrolo[1,2-a]pyrazine-1,4-dione,hexahydro-3-(2-methylpropyl)- | 32.35 | 10.61 | 5.06 |
21 | 34.23 | 9H-Pyrrolo[3.4-b]indole | 16.01 | 3.65 | 12.71 |
Standard sample | Mean absorbance (OD450nm) | Mass percent/% | Mural samples | Mean absorbance (OD450 nm) | Mass percent/% |
---|---|---|---|---|---|
1 | 0.316 | 0.00 | |||
2 | 0.941 | 0.25 | A1 | 0.372 | 0.039 |
3 | 1.611 | 0.50 | A2 | 0.336 | 0.020 |
4 | 2.207 | 1.00 | |||
5 | 2.740 | 2.00 |
Table 4 ELISA results for standard egg white samples and burial mural samples
Standard sample | Mean absorbance (OD450nm) | Mass percent/% | Mural samples | Mean absorbance (OD450 nm) | Mass percent/% |
---|---|---|---|---|---|
1 | 0.316 | 0.00 | |||
2 | 0.941 | 0.25 | A1 | 0.372 | 0.039 |
3 | 1.611 | 0.50 | A2 | 0.336 | 0.020 |
4 | 2.207 | 1.00 | |||
5 | 2.740 | 2.00 |
1 | 牛贺强, 武发思, 王丽琴, 等. 凝胶材料在文物表面污渍去除中的研究进展[J]. 应用化学, 2021, 38(11): 1441-1453. |
NIU H Q, WU F S, WANG L Q, et al. Research progress of gel materials for the removal of stains on cultural relics surface[J]. Chin J Appl Chem, 2021, 38(11): 1441-1453. | |
2 | WENG X, MA M Z, ZHANG B J. Detection of early Chinese organic-inorganic composite lime surface from the Lushanmao site, 4300 years ago[J]. J Cul Heri, 2021, 52: 128-133. |
3 | 凌雪, 吴萌蕾, 廖原, 等. 文物研究与保护中的无损分析技术[J]. 光谱学与光谱分析, 2018, 38(7): 2026-2031. |
LING X, WU M L, LIAO Y, et al. Nondestructive techniques in the research and preservation of cultural relics[J]. Spectsc Spect Anal, 2018, 38(7): 2026-2031. | |
4 | 蒋建荣, 尚玉平, 胡兴军, 等. 新疆洛浦县比孜里墓地出土彩棺的科学研究[J]. 光谱学与光谱分析, 2020, 40(7): 2096-2300. |
JIANG J R, SHANG Y P, HU X J, et al. Scientific research of colored coffin excavated from Bizili cemetery in Luopu county of Xinjiang, China[J]. Spectsc Spect Anal, 2020, 40(7): 2096-2300. | |
5 | CARTECHINI L, VAGNINI M, PALMIERI M, et al. Immunodetection of proteins in ancient paint media[J]. Acc Chem Res, 2010, 43(6): 867-876. |
6 | CHEN E, ZHANG B, ZHAO F, et al. Pigments and binding media of polychrome relics from the central hall of Longju temple in Sichuan, China[J]. Herit Sci, 2019, 7(1): 45-53. |
7 | HAO X, SCHILLING M R, WANG X, et al. Use of THM-PY-GC/MS technique to characterize complex, multilayered Chinese lacquer[J]. J Anal Appl Pyrol, 2019, 140: 339-348. |
8 | SHEDRINSKY A M, WAMPLER T P, INDICTOR N, et al. Application of analytical pyrolysis to problems in art and archaeology: a review[J]. J Anal Appl Pyrol, 1989, 15: 393-412. |
9 | SIBILLA O, FEDERICA P, ILARIA B. Analytical pyrolysis of proteins in samples from artistic and archaeological objects[J]. J Anal Appl Pyrol, 2017, 124: 643-657. |
10 | PARK J, SUN M L, MUN S W, et al. Analysis of binding media in dancheong sample from Unhangak Hall of Hwaryeongjeon Shrine, Suwon[J]. J Conser Sci, 2021, 37(3): 245-254. |
11 | HELWIG K, MONAGHAN M, POULIN J, et al. Rita letendre's oil paintings from the 1960s: the effect of artist's materials on degradation phenomena[J]. Stu Conserv, 2021, 66(1/2): 64-78. |
12 | 王娜, 谷岸, 屈雅洁, 等. 文物中多糖类胶接材料的热裂解-气相色谱/质谱识别[J]. 色谱, 2022, 40(8): 753-762. |
WANG N, GU A, QU Y J, et al. Identification of polysaccharide binding materials used in cultural relics by pyrolysis-gas chromatography/mass spectrometry[J]. Chin J Chromatogr, 2022, 40(8): 753-762. | |
13 | WANG Q, CHEN Y, TAMBURINI D. Was lacquer the key ingredient for luxurious jinyin pingtuo products in the Tang Dynasty of China (AD 618-907)?[J]. Archaeometry, 2020, 62(3): 646-659. |
14 | FU Y, CHEN Z, ZHOU S, et al. Comparative study of the materials and lacquering techniques of the lacquer objects from warring states period China[J]. J Archaeol Sci, 2020, 114: 105060-105067. |
15 | 赵金丽, 苏伯民, 于宗仁, 等. 南唐二陵壁画历史保护修复材料的分析[J]. 文物保护与考古科学, 2022, 34(3): 108-114. |
ZHAO J L, SU B M, YU Z R, et al. Analysis of the conservation materials used for murals in two mausoleums of the Southern Tang Dynasty[J]. Sci Conserv Archaeol, 2022, 34(3): 108-114. | |
16 | 王娜, 谷岸, 闵俊嵘, 等. 文物中常用蛋白质类胶结材料的热裂解-气相色谱/质谱识别[J]. 分析化学, 2020, 48(1): 90-96. |
WANG N, GU A, MIN J R, et al. Identification of protein binding media used in Chinese cultural relics by pyrolysis-gas chromatography/mass spectrometry[J]. Chin J Anal Chem, 2020, 48(1): 90-96. | |
17 | 肖博, 魏书亚, 宋燕. 应用热辅助甲基化—热裂解气相色谱技术(THM-Py-GC/MS)对壁画中蛋白质类胶结材料的分析鉴定[J]. 中国文物科学研究, 2018, 1: 70-76. |
XIAO B, WEI S Y, SONG Y. Analysis and identification of protein cementitious materials in murals by THM-Py-GC/MS[J]. Cult Herit Sci Res, 2018, 1: 70-76. | |
18 | COLOMBINI M P, MODUGNO F. Organic mass spectrometry in art and archaeology[M]. Italy: Wiley, 2009. |
19 | CHIAVARI G, FABBRI D, PRATI S. Gas chromatographic-mass spectrometric analysis of products arising from pyrolysis of amino acids in the presence of hexamethyldisilazane[J]. J Chromatogr A, 2001, 922(1/2): 235-241. |
20 | CHIAVARI G, GALLETTI G C, LANTERNA G. The potential of pyrolysis-gas chromatography/mass spectrometry in the recognition of ancient painting media[J]. J Anal Appl Pyrol, 1993, 24(3): 227-242. |
21 | CHIAVARI G, GALLETTI G C. Pyrolysis-gas chromatography/mass spectrometry of amino acids[J]. J Anal Appl Pyrol, 1992, 24(2): 123-137. |
22 | CHIAVARI G, FABBRI D, GALLETTI G C, et al. Use of analytical pyrolysis to characterize egyptian painting layers[J]. Chromatographia, 1995, 40(9/10): 594-600. |
23 | CHIANTORE O, RIEDO C, SCALARONE D. Gas chromatography-mass spectrometric analysis of products from on-line pyrolysis/silylation of plant gums used as binding media[J]. Int J Mass Spectrom, 2009, 284(1/3): 35-41. |
24 | 张秉坚, 方世强, 李佳佳. 中国传统复合灰浆[M]. 北京: 中国建筑工业出版社, 2020. |
ZHANG B J, FANG S Q, LI J J. Chinese traditional composite mortar[M]. Beijing: China Architecture & Building Press, 2020. | |
25 | 李颖, 冯自立, 白瑜, 等. 蛋清溶菌酶的改造及其抑菌活性[J]. 畜牧兽医学报, 2021, 52(4): 1094-1102. |
LI Y, FENG Z L, BAI Y, et al. The modification of hen egg-white lysozyme and its antibacterial activity[J]. Acta Vet Zootech Sin, 2021, 52(4): 1094-1102. |
[1] | Yang Guiqin, Ma Fuhua, Tan Junru, Li Jinsheng, Cui Jianzhong. PREPARATION OF A NOVEL KIND OF NONTOXIC YELLOW PIGMENTS FROM CLAY [J]. Chinese Journal of Applied Chemistry, 1992, 0(4): 58-60. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||