Chinese Journal of Applied Chemistry ›› 2023, Vol. 40 ›› Issue (4): 583-596.DOI: 10.19894/j.issn.1000-0518.220320
• Energy Materials • Previous Articles Next Articles
Wen-Jun SHI, Zhong-Hui SUN(), Zhong-Qian SONG, XU-Jia NAN, Dong-Xue HAN, Li NIU()
Received:
2022-10-07
Accepted:
2023-01-10
Published:
2023-04-01
Online:
2023-04-17
Contact:
Zhong-Hui SUN,Li NIU
About author:
lniu@gzhu.edu.cn;Supported by:
CLC Number:
Wen-Jun SHI, Zhong-Hui SUN, Zhong-Qian SONG, XU-Jia NAN, Dong-Xue HAN, Li NIU. Research Progress of Layered Transition Metal Oxides Cathode Materials for Sodium-ion Batteries[J]. Chinese Journal of Applied Chemistry, 2023, 40(4): 583-596.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.220320
Cationradius/nm | Ar/(g·mol-1) | E/V(νs.SHE) | mp/℃ | Capacity/(mA·h·g-1) | Relative cost | |
---|---|---|---|---|---|---|
Lithium ion | 0.076 | 6.9 | -2.71 | 180.5 | 3 829 | 1 |
Sodium ion | 0.098 | 23 | -3.04 | 97.7 | 1 165 | 0.7 |
Table 1 Comparison of physicochemical properties of sodium ions and lithium ions[25]
Cationradius/nm | Ar/(g·mol-1) | E/V(νs.SHE) | mp/℃ | Capacity/(mA·h·g-1) | Relative cost | |
---|---|---|---|---|---|---|
Lithium ion | 0.076 | 6.9 | -2.71 | 180.5 | 3 829 | 1 |
Sodium ion | 0.098 | 23 | -3.04 | 97.7 | 1 165 | 0.7 |
Fig.3 (a) PXRD pattern for NVPF-NTP;(b)FT-IR; (c) High-resolution V2p XPS spectrum; (d) Rate capabilities from 0.1 to 40 C and the corresponding GCD curves; (e) The cycling stabilities at different rates of 1 C for 1000 cycles and 20 C for 2000 cycles; (f) The electrochemical performance of Sb-CNT//NVPF-NTP full cell[44]
Fig.4 (a) Capacity retentions as a function of cycle numbers; (b) The undoped P2-NM sample; (c) The conventional doped sample; (d) By forming high density of nanoprecipitates, the 3D network structure can effectively suppress bulk cracking[63]
Fig.5 (a) HEO cathode crystal structure evolution; (b) The evolution (003) peaks during the charge-discharge process; (c) Retention of the discharge capacity and Coulombic efficiency at rates of 3 C[29]
Fig.7 (a) Cycle performances of pristine and ZnO-coated samples at a current density of 0.5 C; (b) Rate performances of pristine and ZnO-coated (molar ratio of Zn2+ and NNMO=0.01, 0.03, 0.05 and 0.07) samples at different current densities (0.1, 0.2, 0.5, 1, 2 and 0.1 C); Specific capacity vs. voltage curves for the (c) pristine and (d) 5% ZnO-coated electrodes at different cycles at a current density of 0.5 C with corresponding capacity retention rate vs. cycle number[95]
1 | WHITTINGHAM M S. Electrical energy storage and intercalation chemistry[J]. Science, 1976, 192(4244): 1126-1127. |
2 | TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367. |
3 | TIAN Y S, ZENG G B, RUTT A, et al. Promises and challenges of next-generation “beyond Li-ion” batteries for electric vehicles and gird decarbonization[J]. Chem Rev, 2021, 121(3): 1623-1669. |
4 | CHEN Y Q, KANG Y Q, ZHAO Y, et al. A review of lithium-ion battery safety concerns: the issues, strategies, and testing standards[J]. J Energy Chem, 2021(59): 83-99. |
5 | SUN F, WANG H, QU Z B, et al. Carboxyl-dominant oxygen rich carbon for improved sodium ion storage: synergistic enhancement of adsorption and intercalation mechanisms[J]. Adv Energy Mater, 2021, 11(4): 2002981. |
6 | JIN Q Z, LI W, WANG K L, et al. Tailoring 2D heteroatom-doped carbon nanosheets with dominated pseudocapacitive behaviors enabling fast and high-performance sodium storage[J]. Adv Funct Mater, 2020, 30(14): 1909907. |
7 | WANG H J, LAN J L, YUAN H C, et al. Chemical grafting-derived N,P Co-doped hollow microporous carbon spheres for high-performance sodium-ion battery anodes[J]. Appl Surface Sci, 2020, 518: 746221. |
8 | REN D S, FENG X N, LIU L S, et al. Investigating the relationship between internal short circuit and thermal runaway of lithium-ion batteries under thermal abuse condition[J]. Energy Storage Mater, 2021, 34: 563-573. |
9 | KIM D Y, LI O L, KANG J. Novel synthesis of highly phosphorus-doped carbon as an ultrahigh-rate anode for sodium ion batteries[J]. Carbon, 2020(168): 448-457. |
10 | YANG L, HU M X, QIAN L, et al. Salt and sugar derived high power carbon microspheres anode with excellent low-potential capacity[J]. Carbon, 2020(163): 288-296 |
11 | HU Y S, LU Y X. 2019 Nobel prize for the Li-ion batteries and new opportunities and challenges in Na-ion batteries[J]. ACS Energy Lett, 2019, 4(11): 2689-2690. |
12 | YABUUCHI N, KUBOAT K, DAHBI M, et al. Research development on sodium-ion batteries[J]. Chem Rev, 2014, 114(23): 11636-11682. |
13 | ALVIN S, CHANDRA C, KIM J. Extended plateau capacity of phosphorus-doped hard carbon used as an anode in Na- and K-ion batteries[J]. Chem Eng J, 2020(391): 123576. |
14 | ZHAO C L, LU Y X, CHEN L Q, et al. Ni-based cathode materials for Na-ion batteries[J]. Nano Res, 2019, 12(9): 2018-2030. |
15 | MIZUSHIMA K, JONES P C, WISEMAN P J, et al. LixCoO2 (0<x<1): a new cathode material for batteries of high energy density[J]. Mater Res Bull, 1980, 15(6): 783-789. |
16 | ZHOU G M, LI F, CHEN H M. Progress in flexible lithium batteries and future prospects[J]. Energy Environ Sci, 2014, 7(4): 1307-1338. |
17 | YANG Q F, YAO Z G, LAI C Z, et al. Pre-pulverizing Ni-rich layered oxide cathodes via “liquid explosive” infiltration toward endurable 4.5 V lithium batteries[J]. Energy Storage Mater, 2022(50): 819-828. |
18 | LI S, SUN Y P, LI N, et al. Porosity development at Li-rich layered cathodes in all-solid-state battery during in situ delithiation[J]. Nano Lett, 2022, 22(12): 4905-4911. |
19 | LEWIS J A, CAVALLARO K A, LIU Y, et al. The promise of alloy anodes for solid-state batteries[J]. Joule, 2022, 6(7): 1418-1430. |
20 | STEVENS D A, DAHN J R. High capacityanode materials for rechargeable sodium-ion batteries[J]. J Electrochem Soc, 2000, 147(4): 1271-1273. |
21 | CHEN M Z, ZHANG Y Y, XING G C, et al. Building high power density of sodium-ion batteries: importance of multidimensional diffusion pathways in cathode materials[J]. Front Chem, 2020(8): 152. |
22 | NAYAK P K, YANG L T, BREHM W, et al. From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises[J]. Angew Chem Int Ed, 2018, 57(1): 102-120. |
23 | MUNOZ-MARQUEZ M A, SAUREL D, JUAN L G, et al. Na-ion batteries for large scale applications: areview on anode materials and solid electrolyte interphase formation[J]. Adv Energy Mater, 2017, 7(20): 1700463. |
24 | KLAVETTER K C, GARCIA S, DAHAL N, et al. Li- and Na-reduction products of meso-Co3O4 form high-rate, stably cycling battery anode materials[J]. J Mater Chem A, 2014, 2(34): 14209-14221. |
25 | SLATER M D, KIM D, LEE E, et al. Sodium-ion batteries[J]. Adv Funct Mater, 2013, 23(8): 947-958. |
26 | 杨馨蓉, 车海英, 杨柯, 等. 硬碳负极材料的热稳定性及其钠离子电池安全性能评测[J]. 过程工程学报, 2022, 22(4): 552-560. |
YANG X R, CHE H Y, YANG K, et al. Evaluation of safety performance and thermal stability of hard carbon anode for sodium-ion battery[J]. Chin J Process Eng, 2022, 22(4): 552-560. | |
27 | 杨梦华, 岳丽宏. 基于COMSOL的锂离子电池热失控仿真与防控[J]. 新能源进展, 2022, 10(4): 375- 382. |
YANG M H, YUE L H. Thermal runaway simulation and prevention and control of lithium-ion batteries based on COMSOL[J]. Adv New Renewable En, 2022, 10(4): 375- 382. | |
28 | FANG C, HUANG Y H, ZHANG W X, et al. Routes to high energy cathodes of sodium-ion batteries[J]. Adv Energy Mater, 2016, 6(5): 1501727. |
29 | ZHAO C L, YAO Z P, WANG Q D, et al. Revealing high Na-content P2-typed layered oxides as advanced sodium-ion cathodes[J]. J Am Chem Soc, 2020, 142(12): 5742-5750. |
30 | KOMABA S, YABUUCHI N, NAKAYAMA T, et al. Study on the reversible electrode reaction of Na1- xNi0.5Mn0.5O2 for a rechargeable sodium-ion battery[J]. Inorg Chem, 2012, 51(11): 6211-6220. |
31 | MU L Q, XU S Y, LI Y M, et al. Prototype sodium-ion batteries using an air-stable and Co/Ni-Free O3-layered metal oxide cathode[J]. Adv Mater, 2015, 27(43): 6928-6933. |
32 | ZHAO C L, DING F X, LU Y X, et al. High-entropy layered oxide cathodes for sodium-ion batteries[J]. Angew Chem Int Ed, 2020, 59(1): 264-269. |
33 | KUBOTA K, YABUUCHI N, YOSHIDA H, et al. Layered oxides as positive electrode materials for Na-ion batteries[J]. Mrs Bull, 2014, 39(5): 416-422. |
34 | FENG J, LUO S H, CAI K X, et al. Research progress of tunnel-type sodium manganese oxide cathodes for SIBs[J]. Chin Chem Lett, 2022, 33(5): 2316-2326. |
35 | DELMAS C, FOUASSIER C, HAGENMULLER P. Structural classification and properties of the layered oxides[J]. Physica B+C, 1980, 99(1/2/3/4): 81-85. |
36 | BERTHELOT R, CARLIER D, DELMAS C. Electrochemical investigation of the P2-NaxCoO2 phase diagram[J]. Nat Mater, 2011, 10(1): 74-80 |
37 | ZHAO C L, WANG Q D, YAO Z P, et al. Rational design of layered oxide materials for sodium-ion batteries[J]. Science, 2020, 370(6517): 708. |
38 | YABUUCHI N, KOMABA S. Recent research progress on iron- and manganese-based positive electrode materials for rechargeable sodium batteries[J]. Sci Technol Adv Mater, 2014, 15(4): 043501. |
39 | XU S Y, WANG Y S, BEN L B, et al. Fe-based tunnel-type Na0.61Mn0.27Fe0.34Ti0.39O2 designed by a new strategy as a cathode material for sodium-ion batteries[J]. Adv Energy Mater, 2015, 5(22): 1501156. |
40 | LING J, KARUPPIAH C, KRISHNAN S G, et al. Phosphate polyanion materials as high-voltage lithium-ion battery cathode: a review[J]. Energy Fuels, 2021, 35(13): 10428-10450. |
41 | LAN Y Q, YAO W J, HE X L, et al. Mixed polyanionic compounds as positive electrodes for low-cost electrochemical energy storage[J]. Angew Chem Int Ed, 2020, 59(24): 9255-9262. |
42 | YANG W, LIU Q, ZHAO Y S, et al. Progress on Fe-based polyanionic oxide cathodes materials toward grid-scale energy storage for sodium-ion batteries[J]. Small Methods, 2022, 6(9): 2200555. |
43 | LI H X, XU M, ZHANG Z, et al. Engineering of polyanion type cathode materials for sodium-ion batteries: toward higher energy/power density[J]. Adv Funct Mater, 2020, 30(28): 2000473. |
44 | GUO J Z, WANG P F, WU X L, et al. High-energy/power and low-temperature cathode for sodium-ion batteries: in situ XRD study and superior full-cell performance[J]. Adv Mater, 2017, 29(33): 1701968. |
45 | WANG L, SONG J, QIAO R M, et al. Rhombohedral prussianwhite as cathode for rechargeable sodium-ion batteries[J]. J Am Chem Soc, 2015, 137(7): 2548-2554. |
46 | ZHAO C L, YAO Z P, ZHOU D, et al. Constructing Na-ion cathodes via alkali-site substitution[J]. Adv Funct Mater, 2020, 30(17): 1910840. |
47 | QIAN J F, WU C, CAO Y L, et al. Prussian blue cathode materials for sodium-ion batteries and other ion batteries[J]. Adv Energy Mater, 2018, 8(17): 1702619. |
48 | YOU Y, YAO H R, XIN S, et al. Subzero-temperature cathode for a sodium-ion battery[J]. Adv Mater, 2016, 28(33): 7243. |
49 | SUN Y, GUO S H, ZHOU H S. Adverse effects of interlayer-gliding in layered transition-metal oxides on electrochemical sodium-ion storage[J]. Energ Environ Sci, 2019, 12(3): 825-840. |
50 | YABUUCHI N, YANO M, YOSHIDA H, et al. Synthesis and electrode performance of O3-type NaFeO2-NaNi1/2Mn1/2O2 solid solution for rechargeable sodium batteries[J]. J Electrochem Soc, 2013, 160(5): A3131-A3137. |
51 | SATHIYA M, HEMALATHA K, RAMESHA K, et al. Synthesis, structure, and electrochemical properties of the layered sodium insertion cathode material: NaNi1/3Mn1/3Co1/3O2[J]. Chem Mater, 2012, 24(10): 1846-1853. |
52 | WANG X F, TAMARU M, OKUBO M, et al. Electrode properties of P2-Na2/3MnyCo1- yO2 as cathode materials for sodium-ion batteries[J]. J Phys Chem C, 2013, 117(30): 15545-15551. |
53 | SHI Y S, LI S, GAO A, et al. Probing the structural transition kinetics and charge compensation of the P2-Na0.78Al0.05Ni0.33Mn0.60O2 cathode for sodium ion batteries[J]. ACS Appl Mater Inter, 2019, 11(27): 24122-24131. |
54 | YABUUCHI N, KAJIYAMA M, IWATATE J, et al. P2-type NaxFe1/2Mn1/2O2 made from earth-abundant elements for rechargeable Na batteries[J]. Nat Mater, 2012, 11(6): 512-517. |
55 | LIU Z B, SHEN J D, FENG S H, et al. Ultralow volume change of P2-type layered oxide cathode for Na-ion batteries with controlled phase transition by regulating distribution of Na+[J]. Angew Chem Int Ed, 2021, 60(38): 20960-20969. |
56 | CHEN Z, BALAVHANDRAN R, LEK-HENG C, et al. Effects of transition-metal mixing on Na ordering and kinetics in layered P2 oxides[J]. Phys Rev Appl, 2017, 7(6): 064003. |
57 | LI X, MA H, SU D, et al. Direct visualization of the jahn-teller effect coupled to Na ordering in Na5/8MnO2[J]. Nat Mater, 2014, 13(6): 586-592. |
58 | DE BOISSE B M, LIU G D, MA J T, et al. Intermediate honeycomb ordering to trigger oxygen redox chemistry in layered battery electrode[J]. Nat Commun, 2016(7): 11397. |
59 | CHEN J. Na+/vacancy disordering promises high-rate Na-ion batteries[J]. Acta Phys-Chim Sin, 2019, 35(4): 347-348. |
60 | MU L Q, FENG X, KOU R H, et al. Deciphering the cathode-electrolyte interfacial chemistry in sodium layered cathode materials[J]. Adv Energy Mater, 2018, 8(34): 1801975. |
61 | ZUO W H, LIU X S, QIU J M, et al. Engineering Na+-layer spacings to stabilize Mn-based layered cathodes for sodium-ion batteries[J]. Nat Commun, 2021, 12(1): 4903. |
62 | WANG P F, YOU Y, YIN Y X, et al. Suppressing the P2-O2 phase transition of Na0.67Mn0.67Ni0.33O2 by magnesium substitution for improved sodium-ion batteries[J]. Angew Chem Int Ed, 2016, 55(26): 7445-7449. |
63 | WANG K, WAN H, YAN P F, et al. Dopant segregation boosting high-voltage cyclability of layered cathode for sodium ion batteries[J]. Adv Mater, 2019, 31(46): 1904816. |
64 | CHEN C, DING M L, YAN T R, et al. Anionic redox activities boosted by aluminum doping in layered sodium-ton battery electrode[J]. Small Methods, 2022, 6(3): 2101524. |
65 | SATO T, YOSHIKAWA K, ZHAO W, et al. Efficient stabilization of Na storage reversibility by Ti integration into O3-type NaMnO2[J]. Energy Mater Adv, 2021(1): 143-154. |
66 | SHEN Q Y, LIU Y C, ZHAO D, et al. Transition-metal vacancy manufacturing and sodium-site doping enable a high-performance layered oxide cathode through cationic and anionic redox chemistry[J]. Adv Funct Mater, 2021, 31(51): 2106923. |
67 | PENG B, CHEN Y X, WANG F, et al. Unusualsite-selective doping in layered cathode strengthens electrostatic cohesion of alkali-metal layer for practicable sodium-ion full cell[J]. Adv Mater, 2022, 34(6): 2103210. |
68 | FY H W, WANG Y P, FAN G Z, et al. Synergetic stability enhancement with magnesium and calcium ion substitution for Ni/Mn-based P2-type sodium-ion battery cathodes[J]. Chem Sci, 2022, 13(3): 726-736. |
69 | WALCZAK K, PLEWA A, GHICA C, et al. NaMn0.2Fe0.2Co0.2Ni0.2Ti0.2O2 high-entropy layered oxideexperimental and theoretical evidence of high electrochemical performance in sodium batteries[J]. Energy Storage Mater, 2022(47): 500-514. |
70 | SARKAR A, VELASCO L, WANG D, et al. High entropy oxides for reversible energy storage[J]. Nat Commun, 2018, 9(1): 3400 |
71 | YAN S X, LUO S H, YANG L, et al. Novel P2-type layered medium-entropy ceramics oxide as cathode material for sodium-ion batteries[J]. J Adv Ceram, 2022, 11(1): 158-171. |
72 | WALCZAK K, PLEWA A, GHICA C, et al. NaMn0.2Fe0.2Co0.2Ni0.2Ti0.2O2 high-entropy layered oxide-experimental and theoretical evidence of high electrochemical performance in sodium batteries[J]. Energy Storage Mater, 2022(47): 500-514. |
73 | RONG X H, HU E Y, LU Y X, et al. Anionic redox reaction-induced high-capacity and low-strain cathode with suppressed phase transition[J]. Joule, 2019, 3(2): 503-517. |
74 | LI Z Y, GAO R, ZHANG J C, et al. New insights into designing high-rate performance cathode materials for sodium ion batteries by enlarging the slab-spacing of the Na-ion diffusion layer[J]. J Mater Chem A, 2016, 4(9): 3453-3461. |
75 | SU J C, PEI Y, YANG Z H, et al. First-principles investigation on the structural, electronic properties and diffusion barriers of Mg/Al doped NaCoO2 as the cathode material of rechargeable sodium batteries[J]. RSC Adv, 2015, 5(25): 27229-27234. |
76 | HAN S C, LIM H, JEONG J, et al. Ca-doped NaxCoO2 for improved cyclability in sodium ion batteries[J]. J Power Sources, 2015(277): 9-16. |
77 | YU H J, REN Y, XIAO D D, et al. An ultrastable anode for long-life room-temperature sodium-ion batteries[J]. Angew Chem Int Ed, 2014, 53(34): 8963-8969. |
78 | HAMANI D, ATI M, TARASCOM J M, et al. NaxVO2 as possible electrode for Na-ion batteries[J], Electrochem Commun, 2011, 13(9): 938-941. |
79 | BRACONNIER J J, DELMAS C, HAGENMULLER P. Etude par desintercalation electrochimique des systemes NaxCrO2 et NaxNiO2[J]. Mater Res Bull, 1982, 17(8): 993-1000. |
80 | BILLAUD J, CHEMENT R J, ARMSTRONG A R, et al. β-NaMnO2: a high-performance cathode for sodium-ion batteries[J]. J Am Chem Soc, 2014, 136(49): 17243-17248. |
81 | KIKKAWA S, MIYAZAKI S, KOIZUMI M. Deintercalated NaCoO2 and LiCoO2[J], J Soild State Chem, 1986, 62(1): 35-39. |
82 | HAN M H, GONZALO E, CASAS-CABANAS M, et al. Structural evolution and electrochemistry of monoclinic NaNiO2 upon the first cycling process[J]. J Power Sources, 2014(258): 266-271. |
83 | AGUESSE F, DEL AMO J M L, OTAEGUI L, et al. Structural and electrochemical analysis of Zn doped Na3Ni2SbO6 cathode for Na-ion battery[J]. J Power Sources, 2016(336): 186-195. |
84 | MU L Q, XU S Y, LI Y M, et al. Prototype sodium-ion batteries using an air-stable and Co/Ni-free O3-layered metal oxide cathode[J]. Adv Mater, 2015, 27(43): 6928. |
85 | BAI X, SATHIYA M, MENDOZA-SENCHEZ B, et al. Anionic redox activity in a newly Zn-doped sodium layered oxide P2-Na2/3Mn1- yZnyO2 (0<y<0.23)[J]. Adv Energy Mater, 2018, 8(32): 1802379. |
86 | SATHIYA M, JACQUET Q, DOUBLET M L, et al. A chemical approach to raise cell voltage and suppress phase transition in O3 sodium layered oxide electrodes[J]. Adv Energy Mater, 2018, 8(11): 1702599. |
87 | YUAN D D, LIANG X M, WU L, et al. A Honeycomb-layered Na3Ni2SbO6: a high-rate and cycle-stable cathode for sodium-ion batteries[J]. Adv Mater, 2014, 26(36): 6301-6306. |
88 | LU J L, CAO B, HU B W, et al. Heavy fluorination via ion exchange achieves high-performance Li-Mn-O-F layered cathode for Li-ion batteries[J]. Small, 2022, 18(6): 2103499. |
89 | ZHAO C, YANG Q, GENG F, et al. Restraining oxygen loss and boosting reversible oxygen redox in a P2-type oxide cathode by trace anion substitution[J]. ACS Appl Mater Interfaces, 2021, 13(1): 360. |
90 | GUO Y J, WANG P F, NIU Y B, et al. Boron-doped sodium layered oxide for reversible oxygen redox reaction in Na-ion battery cathodes[J]. Nat Commun, 2021(12): 5276. |
91 | BIANCHINI M, GONZALO E, DREWETT N E, et al. Layered P2-O3 sodium-ion cathodes derived from earth abundant elements[J]. J Mater Chem A, 2018, 6(8): 3552-3559. |
92 | ZHOU Y N, WANG P F, NIU Y B, et al. A P2/P3 composite layered cathode for high-performance Na-ion full batteries[J]. Nano Energy, 2019(55): 143-150. |
93 | JO C H, JO J H, YASHIRO H, et al. Bioinspired surface layer for the cathode material of high-energy-density sodium-ion batteries[J]. Adv Energy Mater, 2018, 8(13): 1702942. |
94 | JIANG Y, YANG Z Z, LI W H, et al. Nanoconfined carbon-coated Na3V2(PO4)3 particles in mesoporous carbon enabling ultralong cycle life for sodium-ion batteries[J]. Adv Energy Mater, 2015, 5(10): 1402104. |
95 | YANG Y Q, DANG R B, WU K, et al. Semiconductor material ZnO-coated P2-type Na2/3Ni1/3Mn2/3O2 cathode materials for sodium-ion batteries with superior electrochemical performance[J]. J Phys Chem C, 2020, 124(3): 1780-1787. |
96 | JO J H, CHOI J U, KONAROV A, et al. Sodium-ion batteries: building effective layered cathode materials with long-term cycling by modifying the surface via sodium phosphate[J]. Adv Funct Mater, 2018, 28(14): 1705968. |
97 | ZHAO L N, ZHAO H L, WANG J, et al. Micro/nano Na3V2(PO4)3/N-doped carbon composites with a hierarchical porous structure for high-rate pouch-type sodium-ion full-cell performance[J]. ACS Appl Mater Interfaces, 2021, 13(7): 8445-8454. |
98 | PENG M H, ZHANG D T, ZHENG L M, et al. Hierarchical Ru-doped sodium vanadium fluorophosphates hollow microspheres as a cathode of enhanced superior rate capability and ultralong stability for sodium-ion batteries[J]. Nano Energy, 2017(31): 64-73. |
99 | MAO Q J, GAO R, LI Q Y, et al. O3-type NaNi0.5Mn0.5O2 hollow microbars with exposed {010} facets as highperformance cathode materials for sodium-ion batteries[J]. Chem Eng J, 2020(382): 122978. |
100 | LIU Y C, SHEN Q Y, ZHAO X D, et al. Hierarchical engineering of porous P2-Na2/3Ni1/3Mn2/3O2 nanofibers assembled by nanoparticles enables superior sodium-ion storage cathodes[J]. Adv Funct Mater, 2019, 30(6): 1907837. |
101 | LI Y M, YANG Z Z, XU S Y, et al. Air-stable copper-based P2-Na7/9Cu2/9Fe1/9Mn2/3O2 as a new positive electrode material for sodium-ion batteries[J]. Adv Sci, 2015, 2(6): 1500031. |
102 | ZHANG Z L, LIU M, XIE Y Y, et al. Superstructurednanocrystals/dual-doped mesoporous carbon anodes for high-performance sodium-ion batteries[J]. Inorg Chem, 2022, 61(3): 8887-8897. |
[1] | YANG Tao, LIU Wenfeng, MA Mengyue, DONG Hongyu, YANG Shuting. Fade Mechanism of Ternary Lithium Ion Power Battery [J]. Chinese Journal of Applied Chemistry, 2020, 37(10): 1181-1186. |
[2] | ZUO Zicheng,LI Yuliang. Applications of Graphdiyne in Li+/Na+ Battery Anodes [J]. Chinese Journal of Applied Chemistry, 2018, 35(9): 1057-1066. |
[3] | ZHANG He,ZHANG Mengshi,LIAO Shijun. Recent Progress in the Lithium-Rich Ternary Layered Cathode Materials [J]. Chinese Journal of Applied Chemistry, 2018, 35(11): 1277-1288. |
[4] | CHEN Lihui,WU Qiuhan,PAN Pei,SONG Zixuan,WANG Feng,DING Yu. Spinel Lithium Manganese Oxide Octahedral Nanoparticles with Excellent Electrochemical Performance as Cathode Materials for Lithium-Ion Batteries [J]. Chinese Journal of Applied Chemistry, 2018, 35(11): 1384-1390. |
[5] | HE Donghua1, TANG Anping1,2*, SHEN Jie1, XU Guorong1,2, LIU Lihua1,2, LING Yuling1,2. Progress in Lithium Vanadyl Phosphate as Electrode Materials for Lithium Ion Batteries [J]. Chinese Journal of Applied Chemistry, 2014, 31(10): 1115-1122. |
[6] | LIU Jianben1*, MO Rubao2, WU Xianming1. Preparation and Electrochemical Performances of Li(Ni1/3Co1/3Mn1/3)0.95Al0.05O2 Cathode Material for Lithium-ion Batteries [J]. Chinese Journal of Applied Chemistry, 2014, 31(04): 462-468. |
[7] | WANG Hong1*, ZHANG Weide2. Surface-coating Modification of Li-rich Cathode Materials Li[Li0.2Mn0.4Fe0.4]O2 [J]. Chinese Journal of Applied Chemistry, 2013, 30(06): 705-709. |
[8] | TANG Anping1,2*, LIU Lihua1,2, XU Guorong1,2, SHEN Jie1, LING Yuling1,2. Progress in Borate Electrode Materials for Lithium Ion Batteries [J]. Chinese Journal of Applied Chemistry, 2012, 29(11): 1221-1230. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||