[1] Etacheri V,Marom R,Elazari R,et al. Challenges in the Development of Advanced Li-Ion Batteries:A Review[J]. Energy Environ Sci,2011,4(9):3243-3262. [2] Goriparti S,Miele EDe Angelis F,et al. Review on Recent Progress of Nanostructured Anode Materials for Li-Ion Batteries[J]. J Power Sources,2014,257:421-443. [3] Lu L,Han X,Li J,et al. A Review on the Key Issues for Lithium-ion Battery Management in Electric Vehicles[J]. J Power Sources,2013,226:272-288. [4] WANG Qiyu,WANG Shuo,ZHANG Jie′nan,et al. Overview of Lithium Ion Battery Failure Analysis[J]. Energy Storage Sci Technol,2017,6(5):1008-1023(in Chinese). 王其钰,王朔,张杰男,等. 锂离子电池失效分析概述[J]. 储能科学与技术,2017,6(5):1008-1023. [5] Arorat P,White R. Capacity Fade Mechanisms and Side Reactions in Lithium-Ion Batteries[J]. J Electrochem Soc,1998,145:3647-3667. [6] RAO Sumin,LI Chengliang. Reasons for Lithium Ion Battery Failure and Material Interface Energy Reduction[J]. Power Supply Technol,2017,41:1528-1564(in Chinese). 饶苏敏,李成亮. 锂电池失效及材料界面能降低究因[J]. 电源技术,2017,41:1528-1564. [7] Watanabe S,Kinoshita M,Hosokawa T,et al. Capacity Fade of LiAlyNi1-x-yCoxO2 Cathode for Lithium-Ion Batteries During Accelerated Calendar and Cycle Life Tests (Surface Analysis of LiAlyNi1-x-yCoxO2 Cathode After Cycle Tests in Restricted Depth of Discharge Ranges)[J]. J Power Sources,2014,258:210-217. [8] Bettge M,Li Y,Gallagher K,et al. Voltage Fade of Layered Oxides:Its Measurement and Impact on Energy Density[J]. J Electrochem Soc,2013,160(11):A2046-A2055. [9] WANG Weina,ZHENG Jianjie. Analysis on the Decline Mechanism of Storage Life of Lithium Ion Batteries Used in Space[J]. Power Supply Technol,2019,43:1605-1607(in Chinese). 王炜娜,郑见杰. 空间用锂离子电池储存寿命衰降机理分析[J]. 电源技术,2019,43:1605-1607. [10] CHEN Xiaoxuan,LI Sheng,HU Yonggang,et al. Failure Mode Analysis of Ternary Layered Oxide Anode Materials for Lithium Ion Batteries[J]. Energy Storage Sci Technol,2019,8:1003-1016(in Chinese). 陈晓轩,李晟,胡泳钢,等. 锂离子电池三元层状氧化物正极材料失效模式分析[J]. 储能科学与技术,2019,8:1003-1016. [11] Biasi L,Schwarz B,Brezesinski T,et al. Chemical, Structural, and Electronic Aspects of Formation and Degradation Behavior on Different Length Scales of Ni-Rich NCM and Li-Rich HE-NCM Cathode Materials in Li-Ion Batteries[J]. Adv Mater,2019,31(26):e1900985. [12] Zhou H,Xin F,Pei B,et al. What Limits the Capacity of Layered Oxide Cathodes in Lithium Batteries?[J]. ACS Energy Lett,2019,4(8):1902-1906. [13] Weigel T,Schipper F,Erickson E,et al. Structural and Electrochemical Aspects of LiNi0.8Co0.1Mn0.1O2 Cathode Materials Doped by Various Cations[J]. ACS Energy Lett,2019:508-516. [14] Ran Q,Zhao H,Hu Y,et al. Enhanced Electrochemical Performance of Dual-conductive Layers Coated Ni-rich LiNi0.6Co0.2Mn0.2O2 Cathode for Li-Ion Batteries at High Cut-Off Voltage[J]. Electrochim Acta,2018,289:82-93. [15] Leanza D,Vaz C,Melinte G,et al. Revealing the Dual Surface Reaction on a HE-NCM Li-Ion Battery Cathode and Their Impact on the Counter Electrode[J]. ACS Appl Mater Interfaces,2019,11(6):6054-6065. [16] Cao Y,Qi X,Hu K,et al. Conductive Polymers Encapsulation to Enhance Electrochemical Performance of Ni-Rich Cathode Materials for Li-Ion Batteries[J]. ACS Appl Mater Interfaces,2018,10(21):18270-18280. [17] Hekmatfar M,Kazzazi A,Eshetu G,et al. Understanding the Electrode/Electrolyte Interface Layer on the Li-Rich Nickel Manganese Cobalt Layered Oxide Cathode by XPS[J]. ACS Appl Mater Interfaces,2019,11(46):43166-43179. [18] Gao H,Cai J,Xu G,et al. Surface Modification for Suppressing Interfacial Parasitic Reactions of a Nickel-Rich Lithium-Ion Cathode[J]. Chem Mater,2019,31(8):2723-2730. [19] Alcántara R,Jaraba M,Lavela P,et al. X-Ray Diffraction and Electrochemical Impedance Spectroscopy Study of Zinc Coated LiNi0.5Mn1.5O4 Electrodes[J]. J Electroanal Chem,2004,566(1):187-192. [20] Gopalakrishnan R,Li Y,Smekens J,et al. Electrochemical Impedance Spectroscopy Characterization and Parameterization of Lithium Nickel Manganese Cobalt Oxide Pouch Cells:Dependency Analysis of Temperature and State of Charge[J]. Ionics,2019,25:111-123. |