Chinese Journal of Applied Chemistry ›› 2023, Vol. 40 ›› Issue (4): 486-499.DOI: 10.19894/j.issn.1000-0518.220264
• Review • Previous Articles Next Articles
Wei-Yin XU1, Tian-Yang XU3, Si-Meng SHAO2, Zhao-Yang XIE2, Hong-Mei YANG2(), Peng YU1()
Received:
2022-08-02
Accepted:
2023-01-28
Published:
2023-04-01
Online:
2023-04-17
Contact:
Hong-Mei YANG,Peng YU
Supported by:
CLC Number:
Wei-Yin XU, Tian-Yang XU, Si-Meng SHAO, Zhao-Yang XIE, Hong-Mei YANG, Peng YU. Research Progress of the Role of Chemical Active Components of Ginseng in Prevention and Treatment of Neurodegenerative Diseases[J]. Chinese Journal of Applied Chemistry, 2023, 40(4): 486-499.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.220264
Active ingredient | Activities | Neuropharmacological mechanisms | Ref. |
---|---|---|---|
Rb1, Rg5, Rh3 | Oxidative stress | Nrf2/HO-1, HO-1 | [ |
Rg1, Rb1, Rg1/Rb1, Rh2 | SOD, GSH, CAT, MDA, BDNF | [ | |
Rg1, Rg5 | Neuroinflammation | iNOS, COX-2, TNF-α, IL-1β, NF-κB, CREB, IL-6, PI3K/Akt | [ |
Rg3 or Rh2 | IL-1α/β, IL-6, TNF-α, MCP-1, PI3K/Akt | [ | |
Rg1 | TNF-α, IL-1β | [ | |
Rg5 | TNF-α, IL-6, PI3K/Akt | [ | |
RGO | IL-1β, IL-6, TNF-α, iNOS, COX-2 | [ | |
Rg1 | Apoptosis | Akt, caspase-3, Bcl-xl | [ |
Rg1, Rb1, Rg1/Rb1, Rg3, Rg2 | PI3K/Akt, Bcl-2/Bax, caspase-3, caspase-9 | [ | |
Rd1, Rg2 | CREB, BDNF, caspase-3 | [ | |
Rg1 | Akt, BDNF/TrkB | [ | |
RGO, GP | PI3K/Akt, Bcl-2/Bax | [ | |
Rg1, Rg3, Rb1, Rh3 | Cholinergic synapses | AchE, ACh, BDNF, p-TrkB,NR1, NR2B | [ |
Table 1 Relevant pathways of active components of ginseng in neurodegenerative diseases
Active ingredient | Activities | Neuropharmacological mechanisms | Ref. |
---|---|---|---|
Rb1, Rg5, Rh3 | Oxidative stress | Nrf2/HO-1, HO-1 | [ |
Rg1, Rb1, Rg1/Rb1, Rh2 | SOD, GSH, CAT, MDA, BDNF | [ | |
Rg1, Rg5 | Neuroinflammation | iNOS, COX-2, TNF-α, IL-1β, NF-κB, CREB, IL-6, PI3K/Akt | [ |
Rg3 or Rh2 | IL-1α/β, IL-6, TNF-α, MCP-1, PI3K/Akt | [ | |
Rg1 | TNF-α, IL-1β | [ | |
Rg5 | TNF-α, IL-6, PI3K/Akt | [ | |
RGO | IL-1β, IL-6, TNF-α, iNOS, COX-2 | [ | |
Rg1 | Apoptosis | Akt, caspase-3, Bcl-xl | [ |
Rg1, Rb1, Rg1/Rb1, Rg3, Rg2 | PI3K/Akt, Bcl-2/Bax, caspase-3, caspase-9 | [ | |
Rd1, Rg2 | CREB, BDNF, caspase-3 | [ | |
Rg1 | Akt, BDNF/TrkB | [ | |
RGO, GP | PI3K/Akt, Bcl-2/Bax | [ | |
Rg1, Rg3, Rb1, Rh3 | Cholinergic synapses | AchE, ACh, BDNF, p-TrkB,NR1, NR2B | [ |
1 | XIANG Y Z, SHANG H C, GAO X M, et al. A comparison of the ancient use of ginseng in traditional Chinese medicine with modern pharmacological experiments and clinical trials[J]. Phytother Res, 2010, 22(7): 851-858. |
2 | 陈林, 郑红英, 郭建鹏. 基于响应面法的人参新炮制品“黑参”提取工艺研究[J]. 中华中医药杂志, 2021, 36(3): 1607-1611. |
CHEN L, ZHENG H Y, GUO J P. Study on extraction process of new ginseng products ‘black Ginseng’ based on response surface method[J]. China J Tradit Chin Med Pharm, 2021, 36(3): 1607-1611. | |
3 | 曾琪, 刘杨波, 谌浩东, 等. 高效液相色谱指纹图谱及一测多评法评价黑参的质量[J]. 中药新药与临床药理, 2021, 32(11): 1710-1715. |
ZENG Q, LIU Y B, CHEN H D, et al. Quality evaluation of black ginseng based on HPLC fingerprint and QAMS[J]. Tradit Chin Drug Res Clin Pharmacol, 2021, 32(11): 1710-1715. | |
4 | 卢蕾, 敖曼, 陈舒雅, 等. 一测多评法同时测定黑参中12种单体皂苷含量[J]. 中药材, 2020, 43(2): 394-397. |
LU L, AO M, CHEN S Y, et al. Simultaneous determination of 12 monomeric saponins in black ginseng by one test and multiple evaluations[J]. J Chin Med Mater 2020, 43(2): 394-397. | |
5 | METWALY A M, ZHU L, HUANG L, et al. Black ginseng and its saponins: preparation, phytochemistry and pharmacological effects[J]. Molecules, 2019, 24(10): 1856. |
6 | LEE D K, PARK S, LONG N P, et al. Research quality-based multivariate modeling for comparison of the pharmacological effects of black and red ginseng[J]. Nutrients, 2020, 12(9): 2590. |
7 | KWON H S, KOH S H. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes[J]. Transl Neurodegener, 2020, 9(4): 12. |
8 | JEFFREY L C, GARY T, CLIVE B. Treatment combinations for Alzheimer′s disease: current and future pharmacotherapy options[J]. J Alzheimers Dis, 2019, 67(3): 779-794. |
9 | AMMAR A C. Preventing neurodegenerative disease[J]. Brain, 2021, 144(5): 1279-1280. |
10 | PENG C, TROJANOWSKI J Q, LEE M Y. Protein transmission in neurodegenerative disease[J]. Nat Rev Neurol, 2020, 16(4): 199-212. |
11 | GHIDONI R, PATERLINI A, BENUSSI L. Translational proteomics in Alzheimer′s disease and related disorders[J]. Clin Biochem, 2013, 46(6): 480-486. |
12 | BUTTERFIELD D A, SULATANA R. Proteomics analysis in Alzheimer′s disease: new insights into mechanisms of neurodegeneration[J]. Int Rev Neurobiol, 2004, 61(12): 159-188. |
13 | BLOEM B R, OKUN M S, KLEIN C. Parkinson′s disease[J]. Lancet, 2021, 397(10291): 2284-2303. |
14 | OH J, KIM J S. Compound K derived from ginseng: neuroprotection and cognitive improvement[J]. Food Funct, 2016, 7(11): 4506-4515. |
15 | SEO J Y, JU S H, OH J, et al. Neuroprotective and cognition-enhancing effects of compound K isolated from Red ginseng[J]. Food Chem, 2016, 64(14): 2855-2864. |
16 | JAKARIA M, HAQUE M E, KIM J, et al. Active ginseng components in cognitive impairment: therapeutic potential and prospects for delivery and clinical study[J]. Oncotarget, 2018, 9(71): 33601-33620. |
17 | HENEKA M T, KUMMER M P, LATZ E. Innate immune activation in neurodegenerative disease[J]. Nat Rev Immunol, 2014, 14(7): 463-477. |
18 | HICKMAN S, IZZY S, SEN P, et al. Microglia in neurodegeneration[J]. Nat Neurosci, 2018, 21: 1359-1369. |
19 | UDDIN M S, KABIR M T, JALOULI M, et al. Neuroinflammatory signaling in the pathogenesis of Alzheimer′s disease[J]. Curr Neuropharmacol, 2022, 20(1): 126-146. |
20 | BERG J V, PROKOP S, MILLER K R, et al. Inhibition of IL-12/IL-23 signaling reduces Alzheimer′s disease-like pathology and cognitive decline[J]. Nat Med, 2012, 18(12): 1812-1819. |
21 | KANG A, XIE T, ZHU D, et al. Suppressive effect of Ginsenoside Rg3 against lipopolysaccharide-induced depression-like behavior and neuroinflammation in mice[J]. Agric Food Chem, 2017, 65(32): 6861-6869. |
22 | KUMAR A, RINWA P, DHAR H. Microglial inhibitory effect of ginseng ameliorates cognitive deficits and neuroinflammation following traumatic head injury in rats[J]. Inflammopharmacology, 2014, 22(3): 155-168. |
23 | WAN J, DENG L, ZHANG C, et al. Chikusetsu saponin V attenuates H2O2-induced oxidative stress in human neuroblastoma SH-SY5Y cells through Sirt1/PGC-1α/Mn-SOD signaling pathways[J]. Can J Physiol Pharmacol, 2016, 94(9): 919-928. |
24 | SELIM G N, IBRAHIM Y, BARAN K, et al. A comparison of the effects of neuronal nitric oxide synthase and inducible nitric oxide synthase inhibition on cartilage damage[J]. Bio Med Res Int, 2016, 2016: 7857345. |
25 | CHEN C, CAO J, MA X, et al. Neuroprotection by polynitrogen manganese complexes: regulation of reactive oxygen species-related pathways[J]. Sci Rep, 2016, 6: 20853. |
26 | ILARIA L, GENNARO R, FRANCESCO C, et al. Oxidative stress, aging, and diseases[J]. Clin Interventions Aging, 2018, 13: 757-772. |
27 | NABAVI S F, SUREDA A, HABTEMARIAM S, et al. Ginsenoside Rd and ischemic stroke; a short review of literatures[J]. J Ginseng Res, 2015, 39(4): 299-303. |
28 | ZHOU T T, ZU G, WANG X, et al. Immunomodulatory and neuroprotective effects of ginsenoside Rg1 in the MPTP(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) -induced mouse model of Parkinson′s disease[J]. Int Immunopharmacol, 2015, 29(2): 334-343. |
29 | PARK Y J, CHO M, CHOI G, et al. A critical regulation of Th17 cell responses and autoimmune neuro-inflammation by ginsenoside Rg3[J]. Biomolecules, 2020, 10(1): 122-133. |
30 | LONG J M, HOLTZMAN D M. Alzheimer disease: an update on pathobiology and treatment strategies[J]. Cell, 2019, 179(2): 312-339. |
31 | BUDZYNSKA B, BOGUSZEWSKA C A, KRUK S M, et al. Effects of imperatorin on scopolamine-induced cognitive impairment and oxidative stress in mice[J]. Psychopharmacology, 2015, 232(5): 931-942. |
32 | WANG Q, SUN L H, JIA W, et al. Comparison of ginsenosides Rg1 and Rb1 for their effects on improving scopolamine‐induced learning and memory impairment in mice[J]. Phytother Res, 2010, 24(12): 1748-1754. |
33 | TODOROVA V, BLOKLAND A. Mitochondria and synaptic plasticity in the mature and aging nervous system[J]. Curr Neuropharmacol, 2017, 15(1): 166-173. |
34 | SONG Z, SHEN F, ZHANG Z, et al. Calpain inhibition ameliorates depression-like behaviors by reducing inflammation and promoting synaptic protein expression in the hippocampus[J]. Neuropharmacology, 2020, 174: 108175. |
35 | 王娟, 申丰铭, 张峥嵘, 等. 人参皂苷Rg1对慢性应激小鼠抑郁样行为、海马突触蛋白及胶质细胞的作用[J]. 生物学杂志, 2021, 38(3): 26-30. |
WANG J, SHEN F M, ZHANG Z R, et al. Effects of ginsenoside Rg1 on depression-like behaviors,expression of hippocampal synaptic proteins and activation of glial cells in stressed mice[J]. J Biol, 2021, 38(3): 26-30. | |
36 | BIKASH C, ECKHARD M, EVA-MARIA M, et al. Glutamatergic nervous system degeneration in a C. elegans. Tau A152T tauopathy model involves pathways of excitotoxicity and Ca2+ dysregulation[J]. Neurobiol Dis, 2018, 117: 189-202. |
37 | BIKASH C, ECKHARD M, EVA-MARIA M, et al. Glutamatergic nervous system degeneration in a C.elegans TauA152T tauopathy model involves pathways of excitotoxicity and Ca2+ dysregulation[J]. Neurobiol Dis, 2018, 117: 189-202. |
38 | ZHANG Y, YANG X M, WANG S, et al. Ginsenoside Re3 prevents cognitive impairment by improoing mitochondrial dysfunction in the rat model of Alzheimer's disease[J]. Agric Food Chem, 2019, 67(36): 10048-10058. |
39 | KWAN K, YUN H, DONG T, et al. Ginsenosides attenuate bioenergetics and morphology of mitochondria in cultured PC12 cells under the insult of amyloid beta-peptide[J]. J Ginseng Res, 2021, 45(4): 473-481. |
40 | SHIN S J, NAM Y, PARK Y H, et al. Therapeutic effects of non-saponin fraction with rich polysaccharide from Korean red ginseng on aging and Alzheimer′s disease[J]. Free Radical Biol Med, 2021, 164: 233-248. |
41 | NOUR S E. Apoptosis and its therapeutic implications in neurodegenerative diseases[J]. Clin Anat, 2022, 35(1): 65-78. |
42 | LIN M T, BEAL M F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases[J]. Nature, 2006, 443: 787-795. |
43 | SANG E P, PARK C, SUN H K, et al. Korean red ginseng extract induces apoptosis and decreases telomerase activity in human leukemia cells[J]. J Ethnopharmacol, 2009, 121(2): 304-312. |
44 | HWANG J Y, SHIM J S, SONG M Y, et al. Proteomic analysis reveals that the protective effects of ginsenoside Rb1 are associated with the actin cytoskeleton in beta-amyloid-treated neuronal cells[J]. J Ginseng Res, 2016, 40(3): 278-284. |
45 | WANG Y, LI Y, YANG W, et al. Ginsenoside Rb1 inhibit apoptosis in rat model of Alzheimer′s disease induced by Aβ1-40[J]. Am J Transl Res, 2018, 10(3): 796-805. |
46 | LIU Y, ZONG X, HUANG J, et al. Ginsenoside Rb1 regulates prefrontal cortical GABAergic transmission in MPTP-treated mice[J]. Aging, 2019, 11(14): 5008-5034. |
47 | CUI J, SHAN R, CAO Y, et al. Protective effects of ginsenoside Rg2 against memory impairment and neuronal death induced by Abeta25-35 in rats[J]. J Ethnopharmacol, 2021, 266: 113466. |
48 | CHRISRTENSEN L P. Ginsenosides: chemistry, biosynthesis, analysis, and potential health effects[J]. Food Nutr Res, 2008, 55: 1-99. |
49 | KENNEDY D O, SCHOLEY A B. Ginseng: potential for the enhancement of cognitive performance and mood[J]. Pharmacol Biochem Behav, 2003, 75(3): 687-700. |
50 | PARK C S, YOO M H, NOH K H, et al. Biotransformation of ginsenosides by hydrolyzing the sugar moieties of ginsenosides using microbial glycosidases[J]. Appl Microbiol Biotechnol, 2010, 87(1): 9-19. |
51 | KIM E J, JUNG I H, VAN LE T K, et al. Ginsenosides Rg5 and Rh3 protect scopolamine-induced memory deficits in mice[J]. J Ethnopharmacol, 2013, 146(1): 294-299. |
52 | WANG Y Z, CHEN J, CHU S F, et al. Improvement of memory in mice and increase of hippocampal excitability in rats by ginsenoside Rg1′s metabolites ginsenoside Rh1 and protopanaxatriol[J]. J Pharmacol Sci, 2009, 109(4): 504-510. |
53 | XU K, ZHANG Y, WANG Y, et al. Ginseng Rb fraction protects glia, neurons and cognitive function in a rat model of neurodegeneration[J]. PLoS One, 2014, 9(6): e101077. |
54 | SONG X Y, HU J F, CHU S F, et al. Ginsenoside Rg1 attenuates okadaic acid induced spatial memory impairment by the GSK3beta/tau signaling pathway and the Abeta formation prevention in rats[J]. Eur J Pharmacol, 2013, 710(1/2/3): 29-38. |
55 | ZHOU T T, ZU G, WANG X, et al. Immunomodulatory and neuroprotective effects of ginsenoside Rg1 in the MPTP(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced mouse model of Parkinson′s disease[J]. Int Immunopharmacol, 2015, 29(2): 334-343. |
56 | HENG Y, ZHANG Q S, MU Z, et al. Ginsenoside Rg1 attenuates motor impairment and neuroinflammation in the MPTP-probenecid-induced parkinsonism mouse model by targeting alpha-synuclein abnormalities in the substantia nigra[J]. Toxicol Lett, 2016, 243: 7-21. |
57 | JIN Y, PENG J, WANG X, et al. Ameliorative effect of Ginsenoside Rg1 on lipopolysaccharide-induced cognitive impairment: role of cholinergic system[J]. Neurochem Res, 2017, 42(5): 1299-1307. |
58 | HUANG L, PENG Z, LU C, et al. Ginsenoside Rg1 alleviates repeated alcohol exposure-induced psychomotor and cognitive deficits[J]. Chin Med, 2020, 15: 44-55. |
59 | ZHANG H, SU Y, SUN Z, et al. Ginsenoside Rg1 alleviates Abeta deposition by inhibiting NADPH oxidase 2 activation in APP/PS1 mice[J]. J Ginseng Res, 2021, 45(6): 665-675. |
60 | KIM J, SJIM J, LEE S, et al. Rg3-enriched ginseng extract ameliorates scopolamine-induced learning deficits in mice[J]. BMC Complementary Altern Med, 2016, 16: 66-75. |
61 | CHALOTAK P, SANGUANPHUN T, LIMBOONEREUNG T, et al. Neurorescue effects of frondoside A and Ginsenoside Rg3 in C. elegans model of Parkinson′s disease[J]. Molecules, 2021, 26(16): 4843-4859. |
62 | JINGANG H, SUNCHANG K, CHANGKEUN S, et al. Ginsenoside Rg3 prevents oxidative stress-induced astrocytic senescence and ameliorates senescence paracrine effects on glioblastoma[J]. Molecules, 2017, 22(9): 1516-1532. |
63 | CUI J, SHAN R, CAO Y, et al. Protective effects of ginsenoside Rg2 against memory impairment and neuronal death induced by Abeta25-35 in rats[J]. J Ethnopharmacol, 2021, 266: 113466. |
64 | HOU J, XUE J, LEE M, et al. Ginsenoside Rd as a potential neuroprotective agent prevents trimethyltin injury[J]. Biomed Rep, 2017, 22: 435-440. |
65 | LIU J F, YAN X D, LI L, et al. Ginsenoside Rd improves learning and memory ability in APP transgenic mice[J]. J Mol Neurosci, 2015, 57(4): 522-528. |
66 | LEE K W, JUNG S Y, CHOI S M, et al. Effects of ginsenoside Re on LPS-induced inflammatory mediators in BV2 microglial cells[J]. BMC Complementary Altern Med, 2012, 12(1): 196-204. |
67 | SHI J, XUE W, ZHAO W J, et al. Pharmacokinetics and dopamine/acetylcholine releasing effects of ginsenoside Re in hippocampus and mPFC of freely moving rats[J]. Acta Pharmacol Sin, 2013, 2: 214-220. |
68 | CAI M, YANG E J. Ginsenoside Re attenuates neuroinflammation in a symptomatic ALS animal model[J]. Am J Chin Med, 2016, 44(2): 401-413. |
69 | YANG Q, LIN J, ZHANG H, et al. Ginsenoside compound K regulates amyloid beta via the Nrf2/Keap1 signaling pathway in mice with scopolamine hydrobromide-induced memory impairments[J]. J Mol Neurosci, 2019, 67(1): 62-71. |
70 | HOU J G, XUE J J, LEE M R, et al. Compound K is able to ameliorate the impaired cognitive function and hippocampal neurogenesis following chemotherapy treatment[J]. Biochem Biophys Res Commun, 2013, 436(1): 104-109. |
71 | HUA K F, CHAO A C, LIN T Y, et al. Ginsenoside compound K reduces the progression of Huntington′s disease via the inhibition of oxidative stress and overactivation of the ATM/AMPK pathway[J]. J Ginseng Res, 2021, 46(4):572-584. |
72 | LI Z, ZHAO L, CHEN J, et al. Ginsenoside Rk1 alleviates LPS-induced depression-like behavior in mice by promoting BDNF and suppressing the neuroinflammatory response[J]. Biochem Biophys Res Commun, 2020, 530(4): 658-664. |
73 | JU S, SEO J Y, LEE S K, et al. Oral administration of hydrolyzed red ginseng extract improves learning and memory capability of scopolamine-treated C57BL/6J mice via upregulation of Nrf2-mediated antioxidant mechanism[J]. Ginseng Res, 2021, 45(1): 108-118. |
74 | CHEN J, LI M, QU D, et al. Neuroprotective effects of red ginseng saponins in scopolamine-treated rats and activity screening based on pharmacokinetics[J]. Molecules, 2019, 24(11): 2136. |
75 | IQBAL H, KIM S K, CHA K M, et al. Korean red ginseng alleviates neuroinflammation and promotes cell survival in the intermittent heat stress-induced rat brain by suppressing oxidative stress via estrogen receptorbeta and brain-derived neurotrophic factor upregulation[J]. J Ginseng Res, 2020, 44(4): 593-602. |
76 | SHIN S J, PARK Y H, JEON S G, et al. Red ginseng inhibits Tau aggregation and promotes Tau dissociation in vitro[J]. Oxid Med Cell Longevity, 2020, 2020: 7829842. |
77 | CHOI J H, JANG M, NAH S Y, et al. Multitarget effects of Korean red ginseng in animal model of Parkinson′s disease: antiapoptosis, antioxidant, antiinflammation, and maintenance of blood-brain barrier integrity[J]. J Ginseng Res, 2018, 42(3): 379-388. |
78 | KIM J, KIM S H, LEE D S, et al. Effects of fermented ginseng on memory impairment and beta-amyloid reduction in Alzheimer′s disease experimental models[J]. J Ginseng Res, 2013, 37(1): 100-107. |
79 | CHPI J G, KIM N, HUH E, et al. White ginseng protects mouse hippocampal cells against amyloid-beta oligomer toxicity[J]. Phytother Res, 2017, 31(3): 497-506. |
80 | 赵莉, 郜玉钢, 姬庆. 人参化学成分的免疫作用及其机制的研究进展[J]. 中南药学, 2015, 13(7): 741-745. |
ZHAO L, GAO Y G, JI Q. Immune effects and mechanism of ginseng[J]. Cent South Pharm, 2015, 13(7): 741-745. | |
81 | LOU H, HU J, WANG Y, et al. In vivo and in vitro neuroprotective effects of Panax ginseng glycoproteins[J]. Int J Biol Macromol, 2018, 113: 607-615. |
82 | SHIN S J, NAM Y, PARK Y H, et al. Therapeutic effects of non-saponin fraction with rich polysaccharide from Korean red ginseng on aging and Alzheimer′s disease[J]. Free Radical Biol Med, 2021, 164: 233-248. |
83 | XU T, SHEN X, YU H, et al. Water-soluble ginseng oligosaccharides protect against scopolamine-induced cognitive impairment by functioning as an antineuroinflammatory agent[J]. J Ginseng Res, 2016, 40(3): 211-219. |
84 | LI H, KANG T, QI B, et al. Neuroprotective effects of ginseng protein on PI3K/Akt signaling pathway in the hippocampus of D-galactose/AlCl3 inducing rats model of Alzheimer′s disease[J]. J Ethnopharmacol, 2016, 179: 162-169. |
85 | LIU M, YU S, WANG J, et al. Ginseng protein protects against mitochondrial dysfunction and neurodegeneration by inducing mitochondrial unfolded protein response in Drosophila melanogaster PINK1 model of Parkinson′s disease[J]. J Ethnopharmacol, 2020, 247: 112213. |
86 | LEE S, YOUN K, JOENG W S, et al. Protective effects of Red ginseng oil against Abeta25-35-induced neuronal apoptosis and inflammation in PC12 cells[J]. Int J Mol Sci, 2017, 18(10): 2218-2238. |
87 | LEE S, YOUN K, JUN M. Major compounds of red ginseng oil attenuate Abeta25-35-induced neuronal apoptosis and inflammation by modulating MAPK/NF-kappaB pathway[J]. Food Funct, 2018, 9(8): 4122-4134. |
88 | HOU J, XUE J, WANG Z, et al. Ginsenoside Rg3 and Rh2 protect trimethyltin-induced neurotoxicity via prevention on neuronal apoptosis and neuroinflammation[J]. Phytother Res, 2018, 32(12): 2531-2540. |
89 | MD J, JOONSOO K, GOVINDARAJAN K, et al. Emerging signals modulating potential of ginseng and its active compounds focusing on neurodegenerative diseases[J]. J Ginseng Res, 2019, 43(2): 163-171. |
90 | LI Z, ZHAO L, CHEN J, et al. Ginsenoside Rk1 alleviates LPS-induced depression-like behavior in mice by promoting BDNF and suppressing the neuroinflammatory response[J]. Biochem Biophys Res Commun, 2020, 530(4): 658-664. |
91 | XU T, SHEN X, YU H, et al. Water-soluble ginseng oligosaccharides protect against scopolamine-induced cognitive impairment by functioning as an antineuroinflammatory agent[J]. J Ginseng Res, 2016, 40(3): 211-219. |
92 | LEE S, YOUN K, JEONG W S, et al. Protective effects of red ginseng oil against Abeta25-35-induced neuronal apoptosis and inflammation in PC12 cells[J]. Int J Mol Sci, 2017, 18(10): 2218-2238. |
93 | LEE J S, SONG J H, SOHN N W, et al. Inhibitory effects of ginsenoside Rb1 on neuroinflammation following systemic lipopolysaccharide treatment in mice[J]. Phytother Res, 2013, 27(9): 1270-1276. |
94 | GH A, DU A, KM B, et al. Inhibitory effect of panaxytriol on BV-2 microglial cell activation[J]. J Pharmacol Sci, 2021, 145(3): 273-278. |
95 | LU D, ZHU L H, SHU X M, et al. Ginsenoside Rg1 relieves tert-butyl hydroperoxide-induced cell impairment in mouse microglial BV2 cells[J]. J Asian Nat Prod Res, 2015, 17(9): 930-945. |
96 | YE R, YANG Q, KONG X, et al. Ginsenoside Rd attenuates early oxidative damage and sequential inflammatory response after transient focal ischemia in rats[J]. Neurochem Int, 2011, 58(3): 391-398. |
97 | CHOI S, LIM J W, KIM H. Korean red ginseng inhibits amyloid-β-induced apoptosis and nucling expression in human neuronal cells[J]. Pharmacology, 2020, 105(9/10): 586-597. |
98 | ZHANG G, LIU A, ZHOU Y, et al. Panax ginseng ginsenoside-Rg2 protects memory impairment via anti-apoptosis in a rat model with vascular dementia[J]. J Ethnopharmacol, 2008, 115(3): 441-448. |
99 | WANG J, LAISHER-GRINBERG S, LI S, et al. Antidepressant-like effects of the active acidic polysaccharide portion of ginseng in mice[J]. J Ethnopharmacol, 2010, 132(1): 65-69. |
100 | LI H, KANG T, QI B, et al. Neuroprotective effects of ginseng protein on PI3K/Akt signaling pathway in the hippocampus of D-galactose/AlCl3 inducing rats model of Alzheimer′s disease[J]. J Ethnopharmacol, 2016, 179: 162-169. |
101 | ZONG Y, AI Q L, ZHONG L M, et al. Ginsenoside Rg1 attenuates lipopolysaccharide-induced inflammatory responses via the phospholipase C-γ1 signaling pathway in murine BV-2 microglial cells[J]. Curr Med Chem, 2012, 19(5): 770-779. |
102 | CUI J, SHAN R, CAO Y, et al. Protective effects of ginsenoside Rg2 against memory impairment and neuronal death induced by Aβ25-35 in rats[J]. J Ethnopharmacol, 2021, 266: 113466. |
103 | CHOI S, LIM J W, KIM H. Korean red ginseng inhibits amyloid-β-induced apoptosis and nucling expression in human neuronal cells[J]. Pharmacology, 2020, 105: 586-597. |
104 | LEE S, YOUN K, JEONG W S, et al. Protective effects of red ginseng oil against Abeta25-35-induced neuronal apoptosis and inflammation in PC12 cells[J]. Food Funct, 2018, 9(8): 4122-4134. |
105 | YE J, YAO J P, XU W, et al. Neuroprotective effects of ginsenosides on neural progenitor cells against oxidative injury[J]. Mol Med Rep, 2016, 13(4): 3083-3091. |
106 | MA J, LIU J, QI W, et al. The beneficial effect of Ginsenoside Rg1 on schwann cells subjected to hydrogen peroxide induced oxidative injury[J]. Int J Biol Sci, 2013, 9(6): 624-636. |
107 | ZENG X S, ZHOU X S, LUO F C, et al. Comparative analysis of the neuroprotective effects of ginsenosides Rg1 and Rb1 extracted from Panax notoginseng against cerebral ischemia[J]. Can J Physiol Pharmacol, 2014, 92(2): 102-108. |
108 | LV J, LU C, JIANG N, et al. Protective effect of ginsenoside Rh2 on scopolamine-induced memory deficits through regulation of cholinergic transmission, oxidative stress and the ERK-CREB-BDNF signaling pathway[J]. Phytother Res, 2021, 35(1): 337-345. |
109 | LEE Y, PARK J S, JUNG J S, et al. Anti-inflammatory effect of Ginsenoside Rg5 in lipopolysaccharide-stimulated BV2 microglial cells[J]. Int J Mol Sci, 2013, 14(5): 9820-9833. |
110 | NING J A, JI A, HW A, et al. Ginsenoside Rg1 ameliorates chronic social defeat stress-induced depressive-like behaviors and hippocampal neuroinflammation[J]. Life Sci, 2020, 252: 117669. |
111 | XUE J, WANG Z, LI W, et al. Ginsenoside Rg3 and Rh2 protect trimethyltin-induced neurotoxicity via prevention on neuronal apoptosis and neuroinflammation, Phytother[J]. Res, 2018,32(12): 2531-2540. |
112 | HENG Y, ZHANG Q S, MU Z, et al. Ginsenoside Rg1 attenuates motor impairment and neuroinflammation in the MPTP-probenecid-induced parkinsonism mouse model by targeting alpha-synuclein abnormalities in the substantia nigra[J]. Toxicol Lett, 2016, 243: 7-21. |
113 | LEE Y Y, PARK J S, LEE E J, et al. Anti-inflammatory mechanism of ginseng saponin metabolite Rh3 in lipopolysaccharide-stimulated microglia: critical role of 5'-adenosine monophosphate-activated protein kinase signaling pathway[J]. ACS Food Sci Technol, 2015, 63(13): 3472-3480. |
114 | NAN F, SUN G, XIE W, et al. Ginsenoside Rb1 mitigates oxidative stress and apoptosis induced by methylglyoxal in SH-SY5Y cells via the PI3K/Akt pathway[J]. Mol Cell Probes, 2019, 48: 101469. |
115 | HASHIMOTO R, YU J, KOIZUMI H, et al. Ginsenoside Rb1 prevents MPP+-induced apoptosis in PC12 Cells by stimulating estrogen receptors with consequent activation of ERK1/2, Akt and inhibition of SAPK/JNK, p38 MAPK[J]. J Evidence-Based Complementary Altern Med, 2012, 2012: 693717. |
116 | LEUMG K W, YUNG K K L, MAK N K, et al. Neuroprotective effects of ginsenoside-Rg1 in primary nigral neurons against rotenone toxicity-ScienceDirect[J]. Neuropharmacology, 2007, 52(3): 827-835. |
117 | CUI J, WANG J, ZHENG M, et al. Ginsenoside Rg2 protects PC12 cells against β-amyloid 25-35 -induced apoptosis via the phosphoinositide 3-kinase/Akt pathway[J]. Chem-Biol Interact, 2017, 275: 152-161. |
118 | ZHANG H, ZHOU Z, CHEN Z, et al. Ginsenoside Rg3 exerts anti-depressive effect on an NMDA-treated cell model and a chronic mild stress animal model[J]. J Pharmacol Sci, 2017, 134(1): 45-54. |
119 | ZHONG S J, WANG L, GU R Z, et al. Ginsenoside Rg1 ameliorates the cognitive deficits in D-galactose and AlCl3-induced aging mice by restoring FGF2-Akt and BDNF-TrkB signaling axis to inhibit apoptosis[J]. Int J Med Sci, 2020, 17(8): 1048-1055. |
120 | KIM H J, SHIN E J, LEE B H, et al. Oral administration of gintonin attenuates cholinergic impairments by scopolamine, amyloid-β protein, and mouse model of Alzheimer′s disease[J]. Mol Cells, 2015, 38(9): 796-805. |
121 | NIE L, XIA J, LI H, et al. Ginsenoside Rg1 ameliorates behavioral abnormalities and modulates the hippocampal proteomic change in triple transgenic mice of Alzheimer′s disease[J]. Oxid Med Cell Longevity, 2017, 2017: 6473506. |
122 | LI F, WU X, LI J, et al. Ginsenoside Rg1 ameliorates hippocampal long-term potentiation and memory in an Alzheimer′s disease model[J]. Mol Med Rep, 2016, 13(6): 4904-4910. |
[1] | Yong-Yu CAI, Yong-Xi WU, Fang-Tong LI, Dong XIE, Yi-Zhu WANG, Mei-Yu ZHANG, Yu-Lin DAI, Fei ZHENG, Hao YUE. Research Progress on the Relationship Between Gut Microbiota and Its Metabolites and Neurodegenerative Diseases [J]. Chinese Journal of Applied Chemistry, 2023, 40(3): 309-316. |
[2] | Rui WANG, Xiang-Ru MENG, Qiong LI, En-Peng WANG, Xin HUANG, Chang-Bao CHEN. Research Progress on the Decomposed Allelopathy of Panax Genus [J]. Chinese Journal of Applied Chemistry, 2023, 40(1): 1-8. |
[3] | Yan-Long SHEN, Li-Ye CHENG, Xiang-Ru MENG, Qiong LI, Lian-Yun DU, En-Peng WANG, Chang-Bao CHEN. Effects of Ginseng Continuous Soil Crop on Growth Development and Antioxidant System of Ginseng at Different Fertility Stages [J]. Chinese Journal of Applied Chemistry, 2023, 40(1): 109-115. |
[4] | Jun-Jie ZHANG, Yun-Jiao SHEN, Li-Ying MA, Peng-Hui WANG, Lei WANG, Yu-Lin DAI, Lei ZHAO. Study on Extract Composition of American Ginseng Flower in Oxidative-Induced H9c2 Cardromyocytes by LC-MS [J]. Chinese Journal of Applied Chemistry, 2023, 40(1): 126-133. |
[5] | Jing-Wan LIU, Qiong LI, Tao ZHANG, En-Peng WANG, Huan WANG, Xue CHEN, Chang-Bao CHEN. Research Progress on the Continuous Cropping Obstacles of Ginseng from Soil Improvement [J]. Chinese Journal of Applied Chemistry, 2022, 39(12): 1818-1832. |
[6] | Jing-Wan LIU, Qiong LI, En-Peng WANG, Tao ZHANG, Huan WANG, Zhe ZHANG, Xue CHEN, Chang-Bao CHEN. Research Progress on Cultivation of Panax Ginseng C.A.Meyer [J]. Chinese Journal of Applied Chemistry, 2022, 39(11): 1641-1651. |
[7] | ZHANG Na, LI Le-Le, HUANG Xin, LIU Shu-Ying. Determination of Oligosaccharides in Ginseng from Different Growth Environments by Ultra Performance Liquid Chromatography Triple Quadrupole Tandem Mass Spectrometry Combined with Solid Phase Methylation [J]. Chinese Journal of Applied Chemistry, 2021, 38(3): 247-255. |
[8] | LI Le, TAN Lu-Ying, WANG Cai-Xia, LI Kun, LI Ping-Ya, LIU Jin-Ping, LIU Yun-He. Identification of Chemical Constituents of American Ginseng Fruit Pedicels by Ultra-performance Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry [J]. Chinese Journal of Applied Chemistry, 2021, 38(3): 256-270. |
[9] | WANG En-Peng, DU Lian-Yun, JIANG Tao, LI Guang, WEI Kun, ZHU Shuang, YUE Hao, CHEN Chang-Bao. Whitening Activity, Antioxidant Activity and Ginsenosides Analysis of Ginseng Wash Water [J]. Chinese Journal of Applied Chemistry, 2021, 38(3): 289-297. |
[10] | ZHANG Hui-E, HOU Jian-Feng, WANG Jing-Yuan, ZHU Shuang, DU Lian-Yun, YE Ping, WEI Kun, CHEN Chang-Bao, LI Guang, WANG En-Peng. A Differential Study on in vitro Antioxidant Activity and Extract Composition of Different Parts of Panax Ginseng [J]. Chinese Journal of Applied Chemistry, 2021, 38(11): 1531-1540. |
[11] | WANG Wei, ZHENG Fei, GE Yan, QIAO Mengdan, YUE Hao, LIU Shuying. Analysis of Volatile Components in Processed Ginseng by GC-MS/MS [J]. Chinese Journal of Applied Chemistry, 2017, 34(8): 965-970. |
[12] | WANG Haiwei, XU Kun, TAN Ying, LU Cuige, NA Hui, WANG Pixin, WANG Yang, LIU Xiusheng. Synthesis and Application of Hyperbranched Poly(amido amine) Demulsifier [J]. Chinese Journal of Applied Chemistry, 2017, 34(4): 423-429. |
[13] | DU Qin-Qin1,2, ZHANG Xu1, SONG Feng-Rui1, LIU Zhi-Qiang1, LIU Shu-Ying1*. The Application of HPLC-ESI-MS or FRAP in Studying the Variation of Ginsenosides and Their Anti-oxidation after the Combination of Ginseng with Zingiber officinale Rosc or Radix Paeoniae Rubra [J]. Chinese Journal of Applied Chemistry, 2010, 27(10): 1209-1214. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||