Chinese Journal of Applied Chemistry ›› 2023, Vol. 40 ›› Issue (3): 309-316.DOI: 10.19894/j.issn.1000-0518.220161
• Review • Next Articles
Yong-Yu CAI, Yong-Xi WU, Fang-Tong LI, Dong XIE, Yi-Zhu WANG, Mei-Yu ZHANG, Yu-Lin DAI, Fei ZHENG(), Hao YUE()
Received:
2022-05-01
Accepted:
2022-09-15
Published:
2023-03-01
Online:
2023-03-27
Contact:
Fei ZHENG,Hao YUE
About author:
yuehao@sohu.comSupported by:
CLC Number:
Yong-Yu CAI, Yong-Xi WU, Fang-Tong LI, Dong XIE, Yi-Zhu WANG, Mei-Yu ZHANG, Yu-Lin DAI, Fei ZHENG, Hao YUE. Research Progress on the Relationship Between Gut Microbiota and Its Metabolites and Neurodegenerative Diseases[J]. Chinese Journal of Applied Chemistry, 2023, 40(3): 309-316.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.220161
Neurodegenerative disease | Increased genus | Reduced genus | Ref. |
---|---|---|---|
Alzheimer's disease | C21 | Ruminococcus, Butyricicoccus pullicaecorum | [ |
Parkinson's disease | Bifidobacterium, Collinsella, Bilophila, Akkermansia | Rothia,Faecalibacterium, Vibrio Butyricum vibrio, Vivibrio Pseudobutyricum | [ |
Multiple sclerosis | g24 FCEY Clostridium g24 FCEY, Akkermansia, Bifidobacterium, Streptococcus | Erysipelotrichaceae, Blautia, Clostridium, Bacteroides.Stercoris, Bacteroides.coprophilus | [ |
Atrophic lateral sclerosis | Escherichia, Streptococcussalivarius, Lactobacillus, Citrobacter, Coprococcus Ruminococcaceae NK4A214, Ruminococcaceae UCG-014, Shigella, Bifidobacterium, Akkermansia | Rothia, Eubacterium, JC118 Clostridiaceae bacterium JC118, Coprobacter fastidiosus. Ruminococcus sp 51 39 BFAA | [ |
Table 1 Changes in gut microbiota in neurodegenerative diseases[9-16]
Neurodegenerative disease | Increased genus | Reduced genus | Ref. |
---|---|---|---|
Alzheimer's disease | C21 | Ruminococcus, Butyricicoccus pullicaecorum | [ |
Parkinson's disease | Bifidobacterium, Collinsella, Bilophila, Akkermansia | Rothia,Faecalibacterium, Vibrio Butyricum vibrio, Vivibrio Pseudobutyricum | [ |
Multiple sclerosis | g24 FCEY Clostridium g24 FCEY, Akkermansia, Bifidobacterium, Streptococcus | Erysipelotrichaceae, Blautia, Clostridium, Bacteroides.Stercoris, Bacteroides.coprophilus | [ |
Atrophic lateral sclerosis | Escherichia, Streptococcussalivarius, Lactobacillus, Citrobacter, Coprococcus Ruminococcaceae NK4A214, Ruminococcaceae UCG-014, Shigella, Bifidobacterium, Akkermansia | Rothia, Eubacterium, JC118 Clostridiaceae bacterium JC118, Coprobacter fastidiosus. Ruminococcus sp 51 39 BFAA | [ |
1 | HAMID A M, MITRA-SADAT S S, ZARRINDAST M R. Therapeutic potential of stem cells for treatment of neurodegenerative diseases[J]. Biotechnol Lett, 2020, 42(7): 1073-1101. |
2 | 黄宗晖, 周荣斌. 神经炎症与神经退行性疾病[J]. 科技导报, 2021, 39(20): 45-55. |
HUANG Z H, ZHOU R B. Neuroinflammation and neurodegenerative diseases[J]. Sci Technol Rev, 2021, 39(20): 45-55. | |
3 | 陈晓, 郑玉璐, 姚笛. 人口老龄化、工业智能化与经济高质量发展[J]. 统计与决策, 2022(6): 129-132. |
CHEN X, ZHENG Y L, YAO D. Population aging, industrial intelligence and high-quality economic development[J]. Statistics Decision, 2022(6): 129-132. | |
4 | 钟钰, 郑琴, 胡鹏翼, 等. 植物精油抗衰老的药理作用与机制的研究进展[J]. 中草药, 2019, 50(22): 5584-5590. |
ZHONG Y, ZHENG Q, HU P Y, et al. Research progress on the anti-aging pharmacological effects and mechanisms of plant essential oils[J]. Chin Traditional, Herbal Drugs, 2019, 50(22): 5584-5590. | |
5 | MONTIEL-CASTRO A J, GONZÁLEZ-CERVANTES R M, BRAVO-RUISECO G, et al. The microbiota-gut-brain axis: neurobehavioral correlates, health and sociality[J]. Front Integr Neurosci, 2013, 7: 70. |
6 | SUGANYA K, KOO B S. Gut-brain axis: role of gut microbiota on neurological disorders and how probiotics/prebiotics beneficially modulate microbial and immune pathways to improve brain functions[J]. Int J Mol Sci, 2020, 21(20): 7551. |
7 | RASKOY H, BURCHARTH J, POMMERGARRD H C, et al. Irritable bowel syndrome, the microbiota and the gut-brain axis[J]. Gut Microbes, 2016, 7(5): 365-383. |
8 | JANDHYALA SM, TALUKDAR R, SUBRAMANYAM C, et al. Role of the normal gut microbiota[J]. World J Gastroenterol, 2015, 21(29): 8787-8803. |
9 | ZHANG L, WANG Y, XIA X Y, et al. Altered gut microbiota in a mouse model of Alzheimer's disease[J]. J Alzheimers Dis, 2017, 60(4):1241-1257. |
10 | CIRSTEA M S, YU A C, GOLZ E, et al. Microbiota composition and metabolism are associated with gut function in Parkinson's disease[J]. Mov Disord, 2020, 35(7): 1208-1217. |
11 | SCHEPERJANS F, AHO V, PEREIRA P A, et al. Gut microbiota are related to Parkinson's disease and clinical phenotype[J]. Mov Disord, 2015, 30(3): 350-358. |
12 | VASCELLARI S, PALMAS V, MELIS M, et al. Gut microbiota and metabolome Alterations associated with Parkinson's disease[J]. mSystems, 2020, 5(5): e00561. |
13 | MIYAKE S, KIM S, SUDA W, et al. Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belonging to clostridia XIVa and IV clusters[J]. PLoS One, 2015, 10(9): e0137429. |
14 | COX L M, MAGHZI A H, LIU S, et al. Gut microbiome in progressive multiple sclerosis[J]. Ann Neurol, 2021, 89(6): 1195-1211. |
15 | DI GIOIA D, BOZZI CIONCI N, BAFFONI L, et al. A prospective longitudinal study on the microbiota composition in amyotrophic lateral sclerosis[J]. BMC Med, 2020, 18(1): 153. |
16 | NICHOLSON K, BIOMEVIK K, ABU-ALI G, et al. The human gut microbiota in people with amyotrophic lateral sclerosis[J]. Amyotroph Lateral Scler Frontotemporal Degener, 2021, 22(3/4): 186-194. |
17 | LÓPEZ-OTÍN C, BLASCO MA, PARTRIDGE L, et al. The hallmarks of aging[J]. Cell, 2013, 153(6): 1194-1217 |
18 | 赵鹏, 孙亚平, 陈红, 等. 阿尔茨海默病发病机制探究[J]. 中风与神经疾病杂志, 2016, 33(1): 86-89 |
ZHAO P, SUN Y P, CHEN H, et al. Probe into the pathogenesis of Alzheimer's disease[J]. J Apoplexy Nerv Dis, 2016, 33(1): 86-89. | |
19 | ZHUANG Z Q, SHEN L L, LI W W, et al. Gut microbiota is altered in patients with Alzheimer's disease[J]. J Alzheimers Dis, 2018, 63(4): 1337-1346. |
20 | NGUYEN M, WONG Y C, YSSELSTEIN D, et al. Synaptic, mitochondrial, and lysosomal dysfunction in Parkinson's disease[J]. Trends Neurosci, 2019, 42(2): 140-149. |
21 | SCHEPICI G, SILVESTRO S, BRAMANTI P, et al. The gut microbiota in multiple sclerosis: an overview of clinical trials[J]. Cell Transplant, 2019, 28(12): 1507-1527. |
22 | 刘玥, 朱瑜, 江建香, 等. 肌萎缩侧索硬化致病蛋白与自噬相关研究进展[J]. 中国老年学杂志, 2022, 42(5): 1239-1243. |
LIU Y, ZHU Y, JIANG J X, et al. Research progress of amyotrophic lateral sclerosis pathogenic proteins and autophagy[J]. Chin J Gerontol, 2022, 42(5): 1239-1243. | |
23 | BLOCK M L, HONG J S. Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism[J]. Prog Neurobiol, 2005, 76(2): 77-98. |
24 | 吴永继. 杜仲水提物对脂多糖诱导的小鼠神经炎症的保护作用及其机制研究[D]. 咸阳: 西北农林科技大学, 2021. |
WU Y J. Protective effect and mechanism of Eucommia ulmoides water extract on lipopolysaccharide-induced neuroinflammation in mice[D]. Xianyang: Northwest A&F University, 2021. | |
25 | MAHMOUDIANDEHKORDI S, ARNOLD M, NHO K, et al. Altered bile acid profile associates with cognitive impairment in Alzheimer's disease-an emerging role for gut microbiome[J]. Alzheimers Dement, 2019, 15(1): 76-92. |
26 | BRUNT V E, LAROCCA T J, BAZZONI A E, et al. The gut microbiome-derived metabolite trimethylamine N-oxide modulates neuroinflammation and cognitive function with aging [J]. Geroscience, 2021, 43(1): 377-394. |
27 | CANDELLI M, FRANZA L, PIGAATARO G, et al. Interaction between lipopolysaccharide and gut gicrobiota in inflammatory bowel diseases[J]. Int J Mol Sci, 2021, 22(12): 6242. |
28 | GUO S, Al-SADI R, SAID H M, et al. Lipopolysaccharide causes an increase in intestinal tight junction permeability in vitro and in vivo by inducing enterocyte membrane expression and localization of TLR-4 and CD14[J]. Am J Pathol, 2013, 182(2): 375-387. |
29 | 关杨. 萝卜硫素及其衍生物对LPS活化的BV2小胶质细胞神经炎性的保护作用及分子机制研究[D]. 沈阳: 辽宁大学, 2021. |
GUAN Y. Protective effect and molecular mechanism of sulforaphane and its derivatives on LPS-activated BV2 microglial neuroinflammation[D]. Shenyang: Liaoning University, 2021. | |
30 | CHERRY J D, OLSCHOWKA J A, O'BANION M K. Neuroinflammation and M2 microglia: the good, the bad, and the inflamed[J]. J Neuroinflammation, 2014, 11: 98. |
31 | BIAN Y, DONG Y, SUN J, et al. Protective effect of kaempferol on LPS-induced inflammation and barrier dysfunction in a coculture model of intestinal epithelial cells and intestinal microvascular endothelial cells[J]. J Agric Food Chem, 2020, 68(1): 160-167. |
32 | WU X X, HUANG X L, CHEN R R, et al. Paeoniflorin prevents intestinal barrier disruption and inhibits lipopolysaccharide (LPS)-induced inflammation in caco-2 cell monolayers[J]. Inflammation, 2019, 42(6): 2215-2225. |
33 | NAKAMURA Y. Regulating factors for microglial activation[J]. Biol Pharm Bull, 2002, 25(8): 945-953. |
34 | KWON H S, KOH S H. Neuroinflammation in neuroclegenerative disorders: the roles of microglia and astrocytes[J]. Transl Neurodegener, 2020, 9(1): 42. |
35 | SILVA Y P, BERNARDI A, FROZZA R L. The role of short-chain fatty acids from gut microbiota in gut-brain communication[J]. Front Endocrinol, 2020, 11: 25. |
36 | RASMUSSEN H S, HOLTUG K, MORTENSEN B. Short chain fatty acids in the human large intestine. The significance for gastrointestinal health and disease[J]. Ugeskr Laeg, 1988, 150(44): 2635-2638. |
37 | YISSACHAR N,ZHOU Y,UNG L,et al. An intestinal organ culture system uncovers a role for the nervous system in microbeimmune crosstalk[J]. Cell, 2017, 168(6): 1135-1148. |
38 | WENZEL T J, GATES E J, RANGER A L, et al. Short-chain fatty acids (SCFAs) alone or in combination regulate select immune functions of microglia-like cells[J]. Mol Cell Neurosci, 2020, 105: 103493. |
39 | HOU Y, LI X, LIU C, et al. Neuroprotective effects of short-chain fatty acids in MPTP induced mice model of Parkinson's disease[J]. Exp Gerontol, 2021, 150: 111376. |
40 | LIU J, JIN Y, YE Y, et al. The neuroprotective effect of short chain fatty acids against sepsis-associated encephalopathy in mice[J]. Front Immunol, 2021, 12: 626894. |
41 | FANG J Y, RICHARDSON B C. The MAPK signalling pathways and colorectal cancer[J]. Lancet Oncol, 2005, 6(5): 322-327. |
42 | HO L, ONO K, TSUJI M, MAZZOLA P, et al. Protective roles of intestinal microbiota derived short chain fatty acids in Alzheimer's disease-type beta-amyloid neuropathological mechanisms[J]. Expert Rev Neurother, 2018, 18(1): 83-90. |
43 | 杨玲, 周素芳, 路月红, 等. 基于LPS/TLR4信号通路探讨酒精性肝病大鼠疾病进展的相关机制[J]. 医学研究生学报, 2022, 35(1): 35-40. |
YANG L, ZHOU S F, LU Y H, et al. The exploration of the mechanism of progression in ALD rats based on LPS/TLR4 signaling pathway[J]. J Medical Postgraduates, 2022, 35(1): 35-40. | |
44 | ZHAO Z, NING J, BAO X Q, et al. Fecal microbiota transplantation protects rotenone-induced Parkinson's disease mice via suppressing inflammation mediated by the lipopolysaccharide-TLR4 signaling pathway through the microbiota-gut-brain axis[J]. Microbiome, 2021, 9: 226. |
45 | 周传彬, 顾美娟. 肠道菌群代谢产物氧化三甲胺与认知功能障碍疾病关系的研究进展[J/OL]. 解放军医学杂志,2022: 1-9. |
ZHOU C B, GU M J. Research progress on the relationship between intestinal flora metabolite trimethylamine oxide and cognitive dysfunction diseases[J/OL]. Med J Chinese People's Liberation Army, 2022: 1-9. | |
46 | WANG Z, KLIPFELL E, BENNETT B J, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease[J]. Nature, 2011, 472(7341): 57-63. |
47 | LI C, ZHU L, DAI Y, et al. Diet-induced high serum levels of trimethylamine-n-oxide enhance the cellular inflammatory response without exacerbating acute intracerebral hemorrhage injury in mice[J]. Oxid Med Cell Longev, 2022(2022): 1599747. |
48 | LANZ M, JANEIRO M H, MILAGRO F I, et al. Trimethylamine N-oxide (TMAO) drives insulin resistance and cognitive deficiencies in a senescence accelerated mouse model[J]. Mech Ageing Dev, 2022, 204: 111668. |
49 | ZHAO Y, DAI X Y, ZHOU Z, et al. Leucine supplementation via drinking water reduces atherosclerotic lesions in apoE null mice[J]. Acta Pharmacol Sin, 2016, 37(2): 196-203. |
50 | 杜李宇, 李倩滢, 陈伟哲, 等. 肠道菌群促炎与动脉粥样硬化关系研究进展[J]. 食品科学, 2022, 43(3): 325-332. |
DU L Y, LI Q Y, CHEN W Z, et al. Research progress on the relationship between intestinal flora pro-inflammatory and atherosclerosis[J]. Food Sci, 2022, 43(3): 325-332. | |
51 | 周植星, 王涛, 江振洲, 等. FXR调节胆汁酸合成和转运研究进展[J]. 中南药学, 2010, 8(5): 374-377. |
ZHOU Z X, WANG T, JIANG Z Z, et al. Research progress on the regulation of bile acid synthesis and transport by FXR[J]. Central South Pharm, 2010, 8(5): 374-377. | |
52 | WU Y, MO R, ZHANG M, et al. Grape seed proanthocyanidin alleviates intestinal inflammation through gut microbiota-bile acid crosstalk in mice[J]. Front Nutr, 2022(8): 786682. |
53 | SINHA S R, HAILESELASSIE Y, NGUYEN L P, et al. Dysbiosis-induced secondary bile acid deficiency promotes intestinal inflammation[J]. Cell Host Microbe, 2020, 27(4): 659-670. |
54 | KAUR H, SEEGER D, GOLOVKO S, et al. Liver bile acid changes in mouse models of Alzheimer's disease[J]. Int J Mol Sci, 2021, 22(14): 7451. |
55 | 朱广素, 赵建新, 张灏, 等. 短双歧杆菌对Aβ1-42导致的阿尔兹海默症小鼠肠道菌群及代谢物的影响[J]. 食品与发酵工业, 2022, 3: 70-77. |
ZHU G S, ZHAO J X, ZHANG H, et al. Effects of bifidobacterium breve on the intestinal flora and metabolites in mice with Alzheimer's disease induced by Aβ1-42 [J]. Food Ferment Ind, 2022, 3: 70-77. | |
56 | SUN J, XU J, YANG B, et al. Effect of clostridium butyricum against microglia-mediated neuroinflammation in Alzheimer's disease via regulating gut microbiota and metabolites butyrate[J]. Mol Nutr Food Res, 2020, 64(2): e1900636. |
57 | ZHOU H, ZHAO J, LIU C, et al. Xanthoceraside exerts anti-Alzheimer's disease effect by remodeling gut microbiota and modulating microbial-derived metabolites level in rats[J]. Phytomedicine, 2022, 98: 153937. |
58 | SHI J, YIN Q, ZHANG L, et al. Zi Shen Wan Fang attenuates neuroinflammation and cognitive function via remodeling the gut microbiota in diabetes-induced cognitive impairment mice[J]. Front Pharmacol, 2022, 13: 898360. |
59 | WANG Q J, SHEN Y E, WANG X, et al. Concomitant memantine and Lactobacillus plantarum treatment attenuates cognitive impairments in APP/PS1 mice[J]. Aging (Albany NY), 2020, 12(1): 628-649. |
[1] | Wei-Yin XU, Tian-Yang XU, Si-Meng SHAO, Zhao-Yang XIE, Hong-Mei YANG, Peng YU. Research Progress of the Role of Chemical Active Components of Ginseng in Prevention and Treatment of Neurodegenerative Diseases [J]. Chinese Journal of Applied Chemistry, 2023, 40(4): 486-499. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||