Chinese Journal of Applied Chemistry ›› 2021, Vol. 38 ›› Issue (10): 1268-1298.DOI: 10.19894/j.issn.1000-0518.210385
• Review • Previous Articles Next Articles
Dan WANG, Hai-Yan PENG(), Xing-Ping ZHOU, Xiao-Lin XIE()
Received:
2021-08-21
Accepted:
2021-09-06
Published:
2021-10-01
Online:
2021-10-15
Contact:
Hai-Yan PENG,Xiao-Lin XIE
About author:
xlxie@hust.edu.cn; hypeng@hust.edu.cn;Supported by:
CLC Number:
Dan WANG, Hai-Yan PENG, Xing-Ping ZHOU, Xiao-Lin XIE. Research Progress of Holographic Polymer/Liquid Crystal Composites[J]. Chinese Journal of Applied Chemistry, 2021, 38(10): 1268-1298.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.210385
Fig.3 (a)Schematic illustration of characterizing diffraction efficiency of transmission-type holographic gratings. (b) Photographs of diffraction and transmission spots[49]
Fig.6 (a) Proposed work principle of the KCD/NPG photoinitibitor; comparison of the KCD/NPG photoinitibitor with Irgacure 784/BPO photoinitiating system on (b) polymerization rate and (c) phase separation structure[11]. Phase separation structures were characterized by scanning electron microscopy (SEM) after LC removal with n-hexane
Fig. 7 (a) Proposed work principle of the RB/NPG photoinitibitor, (b) diffraction efficiency of HPDLC gratings against RB concentration, (c) SEM images showing HPDLC phase separation structures at different RB concentrations[57]
Fig.8 (a) Main products during photoreduction and photooxidation of KCD in the presence of NPG and TA, respectively; Comparison of (b) KCD/TA photoinitiating system with (c) KCD/NPG photoinitibitor on the regulation of phase separation structures of HPDLC[61-62]
Fig.10 Comparison of KCD/TA with KCD/TA/XAN on (a) polymerization rate, (b) photorheological behaviors and (c) phase separation structures of HPDLC[62]
Fig.12 Comparison of KCD/NPG photoinitiator with KCD/NPG/TA ternary photoinitiating system on (a) polymerization rate, (b) photorheological behaviors and (c) phase separation structures of HPDLC[63]
Fig. 13 Schematic illustration on holographic photopolymerization mediated by the KCD/NPG photoinitibitor (left) and KCD/NPG/TA ternary photoinitiating system (right)[63]
Fig.14 Comparison of the KCD/NPG photoinitibitor with KCD/TA, KCD/TA/XAN and KCD/NPG/TA systems on (a) electro-optic response capability of HPDLC and (b—e) brightness of holographic images[62]
Fig.15 (a) Schematic illustration of fabricating HLCPDLC. Diffraction of HLCPDLC without electric field (b) and when applied 5 V/μm of electric field (c). Polarized optical microscopy (POM) images without electric field (d) and when applied 5 V/μm of electric field (e). Photographs of HLCPDLC samples at (f) 25 ℃ and (g) 44 ℃, respectively[78]
Fig. 16 Effects of 4OCB content on (a) the diffraction efficiency, (b) electro-optic response and (c) phase separation structure of HPDLC gratings[49,86]
Fig.17 (a) Schematic illustration of distribution of mercaptoethanol-capped ZnS nanoparticles in HPDLC. (b) Diffraction efficiency, (c) electro-optic response and (d) phase separation structures of HPDLC when varying ZnS content[75]
Fig. 18 (a) Schematic illustration of LC-ZnS distribution in HPDLC; (b) Electro-optic response, (c) light-scattering loss and (d) SEM images of HPDLC with varied weight ratios of LC-ZnS to P0616A[90]
Fig.19 (a) Schematic illustration of POSS distribution in HPDLC. (b) Diffraction efficiency and (c) electro-optic response of HPDLC doped with different POSS: H-1, without POSS; H-2, methacryl POSS; H-3, methacrylisobutyl POSS; H-4, aminopropylisobutyl POSS[91]
Fig. 20 (a, b) SEM images of UCNR-containing composites after LC removal; (c) Grating diffraction efficiency of HPDLC against UCNR content; (d) Upconversion emission intensity of composites as a function of UCNR content[95]
Fig. 21 Transmission electron microscopy images of (a) UCNR and (b) UCNP. Upconversion luminescence of (c) UCNR and (d) UCNP containing composites under 980 nm laser with a power of 20 W[95,98]
Fig.22(a) Schematic illustration and photos of reflection-type HPSNLC upon heating and cooling; (b) Transmittance, and (c) reflection efficiency of HPSNLC upon heating and cooling[106]
Fig. 23 (a) Schematic diagram of HPSCLC structure; (b) transmittance of PSCLC and HPSCLC under 130 V of applied voltage; (c) Transmittance of PSCLC and HPSCLC at the wavelength of 530 nm versus applied voltage[108]
Fig. 24 (a) Schematic illustration of fabricating HPSBPLC; (b) POM image of HPSBPLC; (c) Diffraction efficiency of HPSBPLC grating versus applied voltage; (d) Rise time and (e) decay time of HPSBPLC grating[118]
Fig.25 (a) Schematic illustration of structure, (b) POM image, (c) photograph, (d) reflection spectra of reflective POLICRYPS under zero and 3 V·μm-1 of electric field[126]
Fig.26 (a) Schematic illustration of structure change of azobenzene doped POLICRYPS under light; (b) POM image of azobenzene doped POLICRYPS; (c) Diffraction efficiency change of azobenzene doped POLICRYPS when turning on/off 532 nm pump light[128].
Fig.28 (a) Schematic illustration of dialing fluorescent emission of composites via LC phase transition and AIEgen's photocyclization; (b) Cooperative-thermoresponse of holographic and fluorescent images[9]
Fig. 31 (a) Schematic representation of optical pumping in distributed feedback laser[152]; (b) Output lasing spectrum with the inset showing vertical laser emission[148]
1 | GEELHAAR T, GRIESAR K, RECKMANN B. 125 years of liquid crystals-a scientific revolution in the home[J]. Angew Chem Int Ed, 2013, 52(34): 8798-8809. |
2 | YANG B, CAI F, HUANG S, et al. Athermal and soft multi-nanopatterning of azopolymers: phototunable mechanical properties[J]. Angew Chem Int Ed, 2020, 59(10): 4035-4042. |
3 | ZOLA R S, BISOYI H K, WANG H, et al. Dynamic control of light direction enabled by stimuli-responsive liquid crystal gratings[J]. Adv Mater, 2019, 31(7): 1806172. |
4 | ZHAO W, DE HAAN L T, BROER D J, et al. Photopolymerization-enforced stratification in liquid crystal materials[J]. Prog Polym Sci, 2021, 114: 101365. |
5 | KATO T, UCHIDA J, ICHIKAWA T, et al. Functional liquid crystals towards the next generation of materials[J]. Angew Chem Int Ed, 2018, 57(16): 4355-4371. |
6 | CAI F, CHEN Y X, WANG W Z, et al. Macroscopic regulation of hierarchical nanostructures in liquid-crystalline block copolymers towards functional materials[J]. Chin J Polym Sci, 2020, 39(4): 397-416. |
7 | CHEN H W, LEE J H, LIN B Y, et al. Liquid crystal display and organic light-emitting diode display: present status and future perspectives[J]. Light: Sci Appl, 2018, 7: 17168. |
8 | LI J, BISOYI H K, TIAN J, et al. Optically rewritable transparent liquid crystal displays enabled by light-driven chiral fluorescent molecular switches[J]. Adv Mater, 2019, 31(10): 1807751. |
9 | ZHAO Y, ZHAO X, LI M D, et al. Crosstalk-free patterning of cooperative-thermoresponse images by the synergy of the AIEgen with the liquid crystal[J]. Angew Chem Int Ed, 2020, 59(25): 10066-10072. |
10 | HU Y X, HAO X, XU L, et al. Construction of supramolecular liquid-crystalline metallacycles for holographic storage of colored images[J]. J Am Chem Soc, 2020, 142(13): 6285-6294. |
11 | PENG H, BI S, NI M, et al. Monochromatic visible light “photoinitibitor”: Janus-faced initiation and inhibition for storage of colored 3D images[J]. J Am Chem Soc, 2014, 136(25): 8855-8858. |
12 | HAO X, XIONG B, NI M, et al. Highly luminescent liquid crystals in aggregation based on platinum(II) complexes[J]. ACS Appl Mater Interfaces, 2020, 12(47): 53058-53066. |
13 | XIONG J, YIN K, LI K, et al. Holographic optical elements for augmented reality: principles, present status, and future perspectives[J]. Adv Photonics Res, 2020, 2(1): 2000049. |
14 | WALDERN J D, GRANT A J, POPOVICH M M, et al. DigiLens switchable Bragg grating waveguide optics for augmented reality applications[C]. Proc SPIE, 2018: 106760G. |
15 | XIONG J, WU S T. Planar liquid crystal polarization optics for augmented reality and virtual reality: from fundamentals to applications[J]. eLight, 2021, 1(1): 3. |
16 | XIONG J, LI Y, LI K, et al. Aberration-free pupil steerable maxwellian display for augmented reality with cholesteric liquid crystal holographic lenses[J]. Opt Lett, 2021, 46(7): 1760-1763. |
17 | LIANG X, CHEN M, WANG Q, et al. Active and passive modulation of solar light transmittance in a hybrid thermochromic soft-matter system for energy-saving smart window applications[J]. J Mater Chem C, 2018, 6(26): 7054-7062. |
18 | XIA Y, LIANG X, JIANG Y, et al. High-efficiency and reliable smart photovoltaic windows enabled by multiresponsive liquid crystal composite films and semi-transparent perovskite solar cells[J]. Adv Energy Mater, 2019, 9(33): 1900720. |
19 | HU W, CHEN M, WANG Q, et al. Broadband reflection in polymer-stabilized cholesteric liquid crystals via thiol-acrylate chemistry[J]. Angew Chem Int Ed, 2019, 58(20): 6698-6702. |
20 | SAED M O, AMBULO C P, KIM H, et al. Molecularly-engineered, 4D-printed liquid crystal elastomer actuators[J]. Adv Funct Mater, 2018, 29(3): 1806412. |
21 | RYABCHUN A, LI Q, LANCIA F, et al. Shape-persistent actuators from hydrazone photoswitches[J]. J Am Chem Soc, 2019, 141(3): 1196-1200. |
22 | KOTIKIAN A, TRUBY R L, BOLEY J W, et al. 3D printing of liquid crystal elastomeric actuators with spatially programed nematic order[J]. Adv Mater, 2018, 30(10): 1706164. |
23 | LV J A, LIU Y, WEI J, et al. Photocontrol of fluid slugs in liquid crystal polymer microactuators[J]. Nature, 2016, 537(7619): 179-184. |
24 | MA S, LI X, HUANG S, et al. A light-activated polymer composite enables on-demand photocontrolled motion: transportation at the liquid/air interface[J]. Angew Chem Int Ed, 2019, 58(9): 2655-2659. |
25 | SONG T, LEI H, CLANCY A J, et al. Supramolecular hydrogen bond enables kapton nanofibers to reinforce liquid-crystalline polymers for light-fueled flight[J]. Nano Energy, 2021, 87: 106207. |
26 | YANG X, ZHU J, YANG D, et al. High-efficiency improvement of thermal conductivities for epoxy composites from synthesized liquid crystal epoxy followed by doping BN fillers[J]. Composites Part B, 2020, 185: 107784. |
27 | ZENG H, WU J, MA Y, et al. Scalable approach to construct self-assembled graphene-based films with an ordered structure for thermal management[J]. ACS Appl Mater Interfaces, 2018, 10(48): 41690-41698. |
28 | KANG D G, KO H, KOO J, et al. Anisotropic thermal interface materials: Directional heat transfer in uniaxially oriented liquid crystal networks[J]. ACS Appl Mater Interfaces, 2018, 10(41): 35557-35562. |
29 | SAEED M H, ZHANG S, CAO Y, et al. Recent advances in the polymer dispersed liquid crystal composite and its applications[J]. Molecules, 2020, 25(23): 5510. |
30 | 张洋, 杨卫平, 赵威, 等. 聚合物稳定液晶材料研究进展[J]. 功能高分子学报, 2021, 34(1): 49-65. |
ZHANG Y, YANG W P, ZHAO W, et al. Research advance in polymer stabilized liquid crystals[J]. J Funct Polym, 2021, 34(1): 49-65. | |
31 | KAJIYAMA T, NAGATA Y, MAEMURA E, et al. Molecular motion-permeability relationships in polycarbonate/liquid crystal (EBBA) composite membrane[J]. Chem Lett, 1979, 8(6): 679-682. |
32 | DOANE J W, VAZ N A, WU B G, et al. Field controlled light scattering from nematic microdroplets[J]. Appl Phys Lett, 1986, 48(4): 269-271. |
33 | HE W L, YU M D, PANG Y J, et al. Nanoparticle-doped chiral nematic liquid-crystal composite and its effect in magnetic-response and electric-response flexible display[J]. Liq Cryst, 2018, 46(2): 249-256. |
34 | ZHANG Y, SUN J, LIU Y, et al. A flexible optically re-writable color liquid crystal display[J]. Appl Phys Lett, 2018, 112(13): 131902. |
35 | HUMAR M, RAVNIK M, PAJK S, et al. Electrically tunable liquid crystal optical microresonators[J]. Nat Photonics, 2009, 3(10): 595-600. |
36 | SOFI J A, DHARA S. Stability of liquid crystal micro-droplets based optical microresonators[J]. Liq Cryst, 2018, 46(4): 629-639. |
37 | DIERKING I. Polymer network-stabilized liquid crystals[J]. Adv Mater, 2000, 12(3): 167-181. |
38 | 倪名立, 彭海炎, 解孝林. 全息聚合物分散液晶的结构调控与性能[J]. 高分子学报, 2017(10): 1557-1573. |
NI M L, PENG H Y, XIE X L. Structure regulation and performance of holographic polymer dispersed liquid crystals[J]. Acta Polym Sin, 2017(10): 1557-1573. | |
39 | GABOR D. A new microscopic principle[J]. Nature, 1948, 161(4098): 777-778. |
40 | GUO S M, LIANG X, ZHANG C H, et al. Preparation of a thermally light-transmittance-controllable film from a coexistent system of polymer-dispersed and polymer-stabilized liquid crystals[J]. ACS Appl Mater Interfaces, 2017, 9(3):2942-2947. |
41 | DE SIO L, VELTRI A, CAPUTO R, et al. POLICRYPS composite structures: realization, characterization and exploitation for electro-optical and all-optical applications[J]. Liq Cryst Rev, 2013, 1(1): 2-19. |
42 | CAPUTO R, DE SIO L, VELTRI A, et al. Development of a new kind of switchable holographic grating made of liquid-crystal films separated by slices of polymeric material[J]. Opt Lett, 2004, 29(11): 1261-1263. |
43 | CAPUTO R, VELTRI A, UMETON C, et al. Kogelnik-like model for the diffraction efficiency of POLICRYPS gratings[J]. J Opt Soc Am B, 2005, 22(4): 735-742. |
44 | ZHANG J, SPONSLER M B. Switchable liquid crystalline photopolymer media for holography[J]. J Am Chem Soc, 1992, 114(4): 1506-1507. |
45 | SUTHERLAND R L, NATARAJAN L V, TONDIGLIA V P, et al. Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes[J]. Chem Mater, 1993, 5(10): 1533-1538. |
46 | BUNNING T J, NATARAJAN L V, TONDIGLIA V P, et al. Holographic polymer-dispersed liquid crystals (H-PDLCs)[J]. Annu Rev Mater Sci, 2000, 30(1): 83-115. |
47 | BUNNING T J, NATARAJAN L V, TONDIGLIA V P, et al. Effects of eliminating the chain extender and varying the grating periodicity on the morphology of holographically written Bragg gratings[C]. Proc SPIE, 1996: 44-55. |
48 | 彭海炎. 全息光聚合物的光聚合反应、结构与性能[D]. 武汉: 华中科技大学, 2014. |
PENG H Y. Photopolymerization, structure and properties of holographic photopolymers[D]. Wuhan: Huazhong University of Science and Technology, 2014. | |
49 | 解孝林,彭海炎,倪名立. 全息高分子材料[M]. 北京: 科学出版社, 2020: 88. |
XIE X L, PENG H Y, NI M L. Holographic Polymer Materials[M]. Beijing: Science Press, 2020: 88. | |
50 | ISO 17901-1. Optics and photonics-holography-part 1: methods of measuring diffraction efficiency and associated optical characteristics of holograms[S]. Switzerland, 2015. |
51 | 徐绍钦. 基于聚氨酯/丙烯酸酯的正交反应型全息高分子材料的性能调控[D]. 武汉: 华中科技大学, 2021. |
XU S Q. Tuning the performance of orthogonal reaction type holographic polymer materials based on polyurethane/acrylates[D]. Wuhan: Huazhong University of Science and Technology, 2021. | |
52 | NATARAJAN L V, BROWN D P, WOFFORD J M, et al. Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization[J]. Polymer, 2006, 47(12): 4411-4420. |
53 | XIE X L, PENG H Y, ZHOU X P, et al. Visible light photoinitiating system for preparing high diffraction efficiency hologram optical polymer material: US, 9753431 B2[P]. 2017-09-05. |
54 | PENG H, NI M, BI S, et al. Highly diffractive, reversibly fast responsive gratings formulated through holography[J]. RSC Adv, 2014, 4(9): 4420-4426. |
55 | NI M, PENG H, LIAO Y, et al. 3D image storage in photopolymer/ZnS nanocomposites tailored by “photoinitibitor”[J]. Macromolecules, 2015, 48(9): 2958-2966. |
56 | 陈冠楠. 全息光聚合物/液晶复合材料的相分离结构调控与光栅性能[D]. 武汉: 华中科技大学, 2020. |
CHEN G N. Regulating the phase separation structure and grating performance of holographic photopolymer/liquid crystal composites[D]. Wuhan: Huazhong University of Science and Technology, 2020. | |
57 | CHEN G, NI M, PENG H, et al. Photoinitiation and inhibition under monochromatic green light for storage of colored 3D images in holographic polymer-dispersed liquid crystals[J]. ACS Appl Mater Interfaces, 2017, 9(2): 1810-1819. |
58 | YU R, LI S, CHEN G, et al. Monochromatic “photoinitibitor”-mediated holographic photopolymer electrolytes for lithium-ion batteries[J]. Adv Sci, 2019, 6(10): 1900205. |
59 | ZHAO C, HE B, WANG G, et al. Hierarchical PEG-based 3D patterns grafting from polymer substrate by surface initiated visible light photolithography[J]. Macromol Rapid Commun, 2016, 37(19): 1611-1617. |
60 | CHARLOT V, IBRAHIM A, BESSIÈRES M, et al. Influence of the photoinitiating system on the properties of photopolymerized methylmethacrylate: the role of the ketyl radical in type II photoinitiators[J]. Polym Chem, 2021, 12(9): 1210-1216. |
61 | ZHAO X, ZHAO Y, LI M D, et al. Efficient 3D printing via photooxidation of ketocoumarin based photopolymerization[J]. Nat Commun, 2021, 12(1): 2873. |
62 | 赵骁宇. 基于香豆素酮的光聚合反应、全息记录与3D打印[D]. 武汉: 华中科技大学, 2021. |
ZHAO X Y. Ketocoumarin-based photopolymerization, holographic recording and 3D printing[D].Wuhan: Huazhong University of Science and Technology, 2021. | |
63 | ZHAO X, SUN S, ZHAO Y, et al. Effect of ketyl radical on the structure and performance of holographic polymer/liquid-crystal composites[J]. Sci China Mater, 2019, 62(12): 1921-1933. |
64 | GROTZINGER C, BURGET D, FOUASSIER P J J P. Photopolymerization reactions initiated by a visible light photoinitiating system: dye/amine/bis(trichloromethyl)-substituted-1,3,5-triazine[J]. Macromol Chem Phys, 2001, 202(18): 3513-3522. |
65 | FOUASSIER J P, ALLONAS X, BURGET D. Photopolymerization reactions under visible lights: principle, mechanisms and examples of applications[J]. Prog Org Coat, 2003, 47(1): 16-36. |
66 | SARKAR M D, GILL N L, WHITEHEAD J B, et al. Effect of monomer functionality on the morphology and performance of the holographic transmission gratings recorded on polymer dispersed liquid crystals[J]. Macromolecules, 2003, 36(3):630-638. |
67 | RAMSEY R A, SHARMA S C. Effects of monomer functionality on switchable holographic gratings formed in polymer-dispersed liquid-crystal cells[J]. ChemPhysChem, 2009, 10(3): 564-570. |
68 | PARK M S, KIM B K. Transmission holographic gratings produced using networked polyurethane acrylates with various functionalities[J]. Nanotechnology, 2006, 17(8): 2012-2017. |
69 | ZHU X, ZHOU Y, YAN D. Influence of branching architecture on polymer properties[J]. J Polym Sci, Part B: Polym Phys, 2011, 49(18): 1277-1286. |
70 | KAISER T, FREY H. Hyperbranched polymer architectures: from Flory's AB(f-1) polycondensates to controlled structures[J]. Polymer, 2020, 211: 123113. |
71 | SCHULTE M D, CLARSON S J, NATARAJAN L V, et al. The effect of fluorine-substituted acrylate monomers on the electro-optical and morphological properties of polymer dispersed liquid crystals[J]. Liq Cryst, 2000, 27(4): 467-475. |
72 | 宋静, 郑致刚, 刘永刚, 等. 含氟单体材料对全息聚合物分散液晶Bragg光栅电光特性的影响[J]. 液晶与显示, 2006(5): 443-446. |
SONG J, ZHENG Z G, LIU Y G, et al. Influence of fluorinated methacrylate monomerson electro-optical characteristics of HPDLC Bragg gratings[J]. Chin J Liq Cryst Disp, 2006(5): 443-446. | |
73 | AGASANDYAN V A, TROSMAN E A, BAGDASAR'YAN K S, et al. Determination of absolute rate constants of chain propagation and termination in the polymerization of N-vinylpyrrolidone[J]. Polym Sci USSR, 1966, 8(9): 1742-1748. |
74 | WHITE T J, LIECHTY W B, NATARAJAN L V, et al. The influence of N-vinyl-2-pyrrolidinone in polymerization of holographic polymer dispersed liquid crystals (HPDLCs)[J]. Polymer, 2006, 47(7): 2289-2298. |
75 | NI M, CHEN G, SUN H, et al. Well-structured holographic polymer dispersed liquid crystals by employing acrylamide and doping ZnS nanoparticles[J]. Mater Chem Front, 2017, 1(2): 294-303. |
76 | 倪名立. 结构有序聚合物复合材料的激光全息加工、结构与性能[D]. 武汉: 华中科技大学, 2017. |
NI M L. Laser holographic processing, structures and properties of polymer composites with ordered structure[D]. Wuhan: Huazhong University of Science and Technology, 2017. | |
77 | YAMADA B, YOSHIOKA M, OTSU T. Rate constants of elementary reactions in radical polymerization of N,N-dimethylacrylamide[J]. Kobunshi Ronbunshu, 1978, 35:795-801. |
78 | DE SIO L, LLOYD P F, TABIRYAN N V, et al. Hidden gratings in holographic liquid crystal polymer-dispersed liquid crystal films[J]. ACS Appl Mater Interfaces, 2018, 10(15): 13107-13112. |
79 | DE SIO L, LLOYD P F, TABIRYAN N V, et al. Thermoplasmonic activated reverse-mode liquid crystal gratings[J]. ACS Appl Nano Mater, 2019, 2(5): 3315-3322. |
80 | NATARAJAN L V, SHEPHERD C K, BRANDELIK D M, et al. Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thiol-ene photopolymerization[J]. Chem Mater, 2003, 15(12): 2477-2484. |
81 | SUTHERLAND R L, TONDIGLIA V P, NATARAJAN L V, et al. Coherent diffraction and random scattering in thiol-ene-based holographic polymer-dispersed liquid crystal reflection gratings[J]. J Appl Phys, 2006, 99(12): 123104. |
82 | WHITE T J, NATARAJAN L V, TONDIGLIA V P, et al. Monomer functionality effects in the formation of thiol-ene holographic polymer dispersed liquid crystals[J]. Macromolecules, 2007, 40(4): 1121-1127. |
83 | DATE M, TAKEUCHI Y, TANAKA K, et al. Full-color reflective display device using holographically fabricated polymer-dispersed liquid crystal (HPDLC)[J]. J Soc Inf Disp, 1999, 7(1): 17. |
84 | JAKUBIAK R, BROWN D P, NATARAJAN L V, et al. Influence of morphology on the lasing behavior of pyrromethene 597 in a holographic polymer dispersed liquid crystal reflection grating[C]. Proc SPIE, 2006: 63220A. |
85 | FENOLL S, BROCAL F, SEGURA J D, et al. Holographic characteristics of photopolymers containing different mixtures of nematic liquid crystals[J]. Polymers, 2019, 11(2): 325. |
86 | PENG H, YU L, CHEN G, et al. Low-voltage-driven and highly-diffractive holographic polymer dispersed liquid crystals with spherical morphology[J]. RSC Adv, 2017, 7(82): 51847-51857. |
87 | LIU Y, ZHENG J, SHEN T, et al. Diffusion kinetics investigations of nano Ag-doped holographic polymer dispersed liquid crystal gratings[J]. Liq Cryst, 2019, 46(12): 1852-1860. |
88 | WANG K, ZHENG J, GUI K, et al. Improvement on the performance of holographic polymer-dispersed liquid crystal gratings with surface plasmon resonance of Ag and Au nanoparticles[J]. Plasmonics, 2014, 10(2): 383-389. |
89 | WANG K, ZHENG J, CHEN Y, et al. Design of dynamic gain equalizer with H-PDLC reflection gratings doped with Ag nanoparticles[J]. IEEE Photonic Technol Lett, 2015, 27(10): 1048-1051. |
90 | PENG H, YU L, CHEN G, et al. Liquid crystalline nanocolloids for the storage of electro-optic responsive images[J]. ACS Appl Mater Interfaces, 2019, 11(8): 8612-8624. |
91 | NI M, CHEN G, WANG Y, et al. Holographic polymer nanocomposites with ordered structures and improved electro-optical performance by doping poss[J]. Composites Part B, 2019, 174: 107045. |
92 | ZHOU H, YE Q, XU J. Polyhedral oligomeric silsesquioxane-based hybrid materials and their applications[J]. Mater Chem Front, 2017, 1(2): 212-230. |
93 | KUO S W, CHANG F C. POSS related polymer nanocomposites[J]. Prog Polym Sci, 2011, 36(12): 1649-1696. |
94 | BUSBEE J D, YUHL A T, NATARAJAN L V, et al. SiO2 nanoparticle sequestration via reactive functionalization in holographic polymer-dispersed liquid crystals[J]. Adv Mater, 2009, 21(36): 3659-3662. |
95 | ZHANG X, YAO W, ZHOU X, et al. Holographic polymer nanocomposites with simultaneously boosted diffraction efficiency and upconversion photoluminescence[J]. Compos Sci Technol, 2019, 181: 107705. |
96 | WEN S, ZHOU J, ZHENG K, et al. Advances in highly doped upconversion nanoparticles[J]. Nat Commun, 2018, 9(1):2415. |
97 | YAO W, TIAN Q, WU W. Tunable emissions of upconversion fluorescence for security applications[J]. Adv Opt Mater, 2018, 7(6): 1801171. |
98 | LUO W, NI M, ZHOU X, et al. Holographic polymer nanocomposites with both high diffraction efficiency and bright upconversion emission by incorporating liquid crystals and core-shell structured upconversion nanoparticles[J]. Composites Part B, 2020, 199: 108290. |
99 | DIERKING I. Recent developments in polymer stabilised liquid crystals[J]. Polym Chem, 2010, 1(8): 1153-1159. |
100 | BROER D J, BOVEN J, MOL G N, et al. In⁃situ photopolymerization of oriented liquid-crystalline acrylates, 3. Oriented polymer networks from a mesogenic diacrylate[J]. Makromol Chem, 1989, 190(9): 2255-2268. |
101 | BROER D J, FINKELMANN H, KONDO K. In⁃situ photopolymerization of an oriented liquid-crystalline acrylate[J]. Makromol Chem, 1988, 189(1): 185-194. |
102 | BROER D J, MOL G N, CHALLA G. In situ photopolymerization of an oriented liquid-crystalline acrylate, 2[J]. Makromol Chem, 1989, 190(1): 19-30. |
103 | KOSSYREV P, SOUSA M E, CRAWFORD G. One- and two-dimensionally structured polymer networks in liquid crystals for switchable diffractive optical applications[J]. Adv Funct Mater, 2004, 14(12): 1227-1232. |
104 | URBAS A, TONDIGLIA V, NATARAJAN L, et al. Optically switchable liquid crystal photonic structures[J]. J Am Chem Soc, 2004, 126(42): 13580-13581. |
105 | TONG X, WANG G, YAVRIAN A, et al. Dual-mode switching of diffraction gratings based on azobenzene-polymer-stabilized liquid crystals[J]. Adv Mater, 2005, 17(3): 370-374. |
106 | LEE K M, TONDIGLIA V P, GODMAN N P, et al. Reconfigurable reflective colors in holographically patterned liquid crystal gels[J]. ACS Photonics, 2020, 7(8): 1978-1982. |
107 | ST JOHN W D, FRITZ W J, LU Z J, et al. Bragg reflection from cholesteric liquid crystals[J]. Phys Rev E, 1995, 51(2): 1191-1198. |
108 | BECKEL E R, NATARAJAN L V, TONDIGLIA V P, et al. Electro-optical properties of holographically patterned polymer-stabilized cholesteric liquid crystals[J]. Liq Cryst, 2007, 34(10): 1151-1158. |
109 | HIKMET R A M, KEMPERMAN H. Electrically switchable mirrors and optical components made from liquid-crystal gels[J]. Nature, 1998, 392(6675): 476-479. |
110 | DUAN M Y, CAO H, WU Y, et al. Broadband reflection in polymer stabilized cholesteric liquid crystal films with stepwise photo-polymerization[J]. Phys Chem Chem Phys, 2017, 19(3): 2353-2358. |
111 | ZHANG D, CAO H, DUAN M, et al. Effect of monomer composition on the performance of polymer-stabilized liquid crystals with two-step photopolymerization[J]. J Polym Sci, Part B: Polym Phys, 2019, 57(17): 1126-1132. |
112 | NATARAJAN L V, BECKEL E R, TONDIGLIA V P, et al. The effect of weak polymer stabilization on the switching properties of cholesteric liquid crystals[J]. Mol Cryst Liq Cryst, 2009, 502(1): 143-153. |
113 | COLES H J, PIVNENKO M N. Liquid crystal 'blue phases' with a wide temperature range[J]. Nature, 2005, 436(7053): 997-1000. |
114 | KIKUCHI H, YOKOTA M, HISAKADO Y, et al. Polymer-stabilized liquid crystal blue phases[J]. Nat Mater, 2002, 1(1): 64-68. |
115 | CASTLES F, DAY F V, MORRIS S M, et al. Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications[J]. Nat Mater, 2012, 11(7): 599-603. |
116 | HISAKADO Y, KIKUCHI H, NAGAMURA T, et al. Large electro-optic Kerr effect in polymer-stabilized liquid-crystalline blue phases[J]. Adv Mater, 2005, 17(1): 96-98. |
117 | WANG L, HE W, WANG Q, et al. Polymer-stabilized nanoparticle-enriched blue phase liquid crystals[J]. J Mater Chem C, 2013, 1(40): 6526. |
118 | YUAN Y, LI Y, CHEN C P, et al. Polymer-stabilized blue-phase liquid crystal grating cured with interfered visible light[J]. Opt Express, 2015, 23(15): 20007-20013. |
119 | CAPUTO R, SUKHOV A V, TABIRYAN N V, et al. Efficiency dynamics of diffraction gratings recorded in liquid crystalline composite materials by a UV interference pattern[J]. Chem Phys, 1999, 245(1): 463-471. |
120 | CAPUTO R, SUKHOV A V, UMETON C, et al. Formation of a grating of submicron nematic layers by photopolymerization of nematic-containing mixtures[J]. J Exp Theor Phys, 2000, 91(6): 1190-1197. |
121 | CAPUTO R, SUKHOV A V, TABIRIAN N V, et al. Mass transfer processes induced by inhomogeneous photo-polymerisation in a multicomponent medium[J]. Chem Phys, 2001, 271(3): 323-335. |
122 | D'ALESSANDRO A, ASQUINI R, GIZZI C, et al. Electro-optic properties of switchable gratings made of polymer and nematic liquid-crystal slices[J]. Opt Lett, 2004, 29(12): 1405-1407. |
123 | CAPUTO R, VELTRI A, UMETON C P, et al. Characterization of the diffraction efficiency of new holographic gratings with a nematic film-polymer-slice sequence structure[J]. J Opt Soc Am B, 2004, 21(11): 1939-1947. |
124 | ABBATE G, VITA F, MARINO A, et al. New generation of holographic gratings based on polymer-LC composites: POLICRYPS and POLIPHEM[J]. Mol Cryst Liq Cryst, 2006, 453(1): 1-13. |
125 | DE SIO L, FERJANI S, STRANGI G, et al. Universal soft matter template for photonic applications[J]. Soft Matter, 2011, 7(8): 3739. |
126 | DE SIO L, TABIRYAN N, BUNNING T J. POLICRYPS-based electrically switchable Bragg reflector[J]. Opt Express, 2015, 23(25): 32696-32702. |
127 | DE SIO L, VELTRI A, UMETON C, et al. All-optical switching of holographic gratings made of polymer-liquid-crystal-polymer slices containing azo-compounds[J]. Appl Phys Lett, 2008, 93(18): 181115. |
128 | DE SIO L, SERAK S, TABIRYAN N, et al. Composite holographic gratings containing light-responsive liquid crystals for visible bichromatic switching[J]. Adv Mater, 2010, 22(21): 2316-2319. |
129 | ABDOLLAHI A, ROGHANI-MAMAQANI H, RAZAVI B, et al. Photoluminescent and chromic nanomaterials for anticounterfeiting technologies: recent advances and future challenges[J]. ACS Nano, 2020, 14(11): 14417-14492. |
130 | HONG W, YUAN Z, CHEN X. Structural color materials for optical anticounterfeiting[J]. Small, 2020, 16(16):1907626. |
131 | YU X, ZHANG H, YU J. Luminescence anti-counterfeiting: From elementary to advanced[J]. Aggregate, 2021, 2(1):20-34. |
132 | Anti-counterfeit packaging technologies market size, market share, application analysis, regional outlook, growth trends, key players, competitive strategies and forecasts, 2020 to 2028[Z]. [2020-10-08]https://www.researchandmarkets.com/reports/5230050/anti-counterfeit-packaging-technologies-market#pos-5230052. |
133 | ARPPE R, SØRENSEN T J. Physical unclonable functions generated through chemical methods for anti-counterfeiting[J]. Nat Rev Chem, 2017, 1(4): 0031. |
134 | HAASE M, SCHÄFER H. Upconverting nanoparticles[J]. Angew Chem Int Ed, 2011, 50(26): 5808-5829. |
135 | ZHOU B, SHI B, JIN D, et al. Controlling upconversion nanocrystals for emerging applications[J]. Nat Nanotechnol, 2015, 10(11): 924-936. |
136 | ZHOU B, YAN L, HUANG J, et al. NIR II-responsive photon upconversion through energy migration in an ytterbium sublattice[J]. Nat Photonics, 2020, 14(12): 760-766. |
137 | REN W, LIN G, CLARKE C, et al. Optical nanomaterials and enabling technologies for high-security-level anticounterfeiting[J]. Adv Mater, 2020, 32(18): 1901430. |
138 | ZHENG K, HAN S, ZENG X, et al. Rewritable optical memory through high-registry orthogonal upconversion[J]. Adv Mater, 2018, 30(30): 1801726. |
139 | ZHU X, ZHANG J, LIU J, et al. Recent progress of rare-earth doped upconversion nanoparticles: synthesis, optimization, and applications[J]. Adv Sci, 2019, 6(22): 1901358. |
140 | NI M, LUO W, WANG D, et al. Orthogonal reconstruction of upconversion and holographic images for anticounterfeiting based on energy transfer[J]. ACS Appl Mater Interfaces, 2021, 13(16): 19159-19167. |
141 | DENG H, CHEN C, HE M Y, et al. High-resolution augmented reality 3D display with use of a lenticular lens array holographic optical element[J]. J Opt Soc Am A, 2019, 36(4): 588-593. |
142 | LI G, LEE D, JEONG Y, et al. Holographic display for see-through augmented reality using mirror-lens holographic optical element[J]. Opt Lett, 2016, 41(11): 2486-2489. |
143 | POPOVICH M, SAGAN S. Application specific integrated lenses for displays[C]. SID Int Symp Dig Tech Pap, 2000, 31(1): 1060-1063. |
144 | SAGAN S F, SMITH R, POPOVICH M. DigiLens color sequential filtering for microdisplay-based projection application[C]. Proc SPIE, 2000, 4093: 281-287. |
145 | WALDERN J D, ABRAHAM S, POPOVICH M M, et al. DigiLens holographic photopolymers for wide angle AR waveguides: photosensitive materials and their applications[C]. Proc SPIE, 2020: 11367. |
146 | KOGELNIK H, SHANK C V. Coupled-wave theory of distributed feedback lasers[J]. J Appl Phys, 1972, 43(5): 2327-2335. |
147 | LIU Y J, SUN X W. Holographic polymer-dispersed liquid crystals: materials, formation, and applications[J]. Adv Optoelectron, 2008: 1-52. |
148 | LIU L, KONG X, WANG Q, et al. High pump efficiency of a second-order distributed feedback laser based on holographic polymer dispersed liquid crystals with preferred liquid crystal molecular orientation[J]. J Mater Chem C, 2018, 6(35): 9517-9522. |
149 | LIU L, HUANG W, DIAO Z, et al. Low threshold of distributed feedback lasers based on scaffolding morphologic holographic polymer dispersed liquid crystal gratings: reduced losses through forster transfer[J]. Liq Cryst, 2013, 41(2): 145-152. |
150 | LIU L, XUAN L, ZHANG G, et al. Enhancement of pump efficiency for an organic distributed feedback laser based on a holographic polymer dispersed liquid crystal as an external light feedback layer[J]. J Mater Chem C, 2015, 3(21): 5566-5572. |
151 | LIU M, LIU Y, ZHANG G, et al. Improving the conversion efficiency of an organic distributed feedback laser by varying solvents of the laser gain layer[J]. Liq Cryst, 2016, 43(3): 417-426. |
152 | DIAO Z, DENG S, HUANG W, et al. Organic dual-wavelength distributed feedback laser empowered by dye-doped holography[J]. J Mater Chem, 2012, 22(44): 23331. |
153 | DIAO Z, XUAN L, LIU L, et al. A dual-wavelength surface-emitting distributed feedback laser from a holographic grating with an organic semiconducting gain and a doped dye[J]. J Mater Chem C, 2014, 2(30): 6177. |
154 | LIU L, KONG X, LIU Y, et al. Electrically tunable dual-wavelength organic laser based on holographic polymer dispersed liquid crystal grating[J]. Org Electron, 2019, 74: 161-165. |
155 | BARNA V, CAPUTO R, DE LUCA A, et al. Distributed feedback micro-laser array: helixed liquid crystals embedded in holographically sculptured polymeric microcavities[J]. Opt Express, 2006, 14(7): 2695-2705. |
[1] | Bing-Shuai CHEN, Hai-Tao ZHUO, Shu HUANG, Shao-Jun CHEN. Advances of High-Performance Polymer Binders for Silicon-Based Anodes [J]. Chinese Journal of Applied Chemistry, 2023, 40(5): 625-639. |
[2] | Xue-Bo LEI, Hui-Jing LIU, He-Yu DING, Guo-Dong SHEN, Run-Jun SUN. Research Progress on Photocatalysts for Degradation of Organic Pollutants in Printing and Dyeing Wastewater [J]. Chinese Journal of Applied Chemistry, 2023, 40(5): 681-696. |
[3] | Yu-Chen TAO, Xiao-Hui HOU, Deng-Ke YIN, Ye YANG. Effect of Electric Field-Regulating Cholesterol-based Liquid Crystal Films on the Growth and Differentiation of Fibroblasts [J]. Chinese Journal of Applied Chemistry, 2023, 40(4): 546-553. |
[4] | Jin-Jian LIU, Yi-Wei LU. Multiple-Responsive Coordination Polymers Based on a Carboxybenzyl Viologen Ligand [J]. Chinese Journal of Applied Chemistry, 2023, 40(3): 397-403. |
[5] | Bo XIONG, Tai-Hua LI, Wu-Ping ZHOU, Chang-Yu LIU, Xiao-Long XU. Preparation of Cu2O/CuO-g-C3N4 Adsorbent by One-step Thermal Polymerization and Adsorption Properties for Methyl Orange [J]. Chinese Journal of Applied Chemistry, 2023, 40(3): 420-429. |
[6] | Jin-Jian LIU, Na LIU, Feng-Yi YANG. Synthesis and Photochromic Properties of Two Isostructural Viologen Coordination Polymers [J]. Chinese Journal of Applied Chemistry, 2023, 40(2): 245-251. |
[7] | Shi-Peng JIANG, Yu-Xi ZHOU, Pei-Ran MENG, Yan-Xuan XIE, Zhi-Yi SONG, Huan-Ying ZHAO, Yue SUN. Preparation and Properties of Ultramicro Imprinting Sensor for Human Serum Albumin via Metal-free Visible-light-induced Atom Transfer Radical Polymerization [J]. Chinese Journal of Applied Chemistry, 2023, 40(2): 299-308. |
[8] | Yu-Huang LI, Ze-Yi LU, Hong-Mei YUAN, Gang WANG, Cheng-Jiang ZHANG. Preparation and Application of Acylhydrazone Bonded Polymer Gel in Nitrofuran Drugs Analysis [J]. Chinese Journal of Applied Chemistry, 2023, 40(1): 100-108. |
[9] | Guan-Yu XIE, Mao LI. Topological Metallopolymers Synthesized by Electropolymerization and Their Photoelectric Properties [J]. Chinese Journal of Applied Chemistry, 2022, 39(8): 1246-1251. |
[10] | Hong-Xia CHEN, Bao-Xia LI, Ying-Ming YAO, Peng LIU. Synthesis, Characterization and Catalytic Activity of Benzylamine⁃bridged Bis(phenolato)lanthanide Complexes [J]. Chinese Journal of Applied Chemistry, 2022, 39(5): 843-851. |
[11] | Yuan-Hao JIAO, Hong-Yan CUI, Liu-Wei ZHANG, Shuang ZENG, Hao WANG, Ming ZHANG, Jing-Yun WANG, Qi-Xian CHEN. Fabrication of Multifunctional Gene Delivery Systems Responsible to Intracellular Microenvironments Through in situ Polymerization [J]. Chinese Journal of Applied Chemistry, 2022, 39(10): 1510-1522. |
[12] | Xiang-Zhi YE, Yun-Shui DENG, Yuan LIU, Yong-Liu ZHOU, Jian-Xiong HE, Chun-Rong XIONG. Glass Sphere Supported Amorphous Organotitanium Polymer to Improve the Turnover Frequency in Photocatalytic Reduction of CO2 [J]. Chinese Journal of Applied Chemistry, 2022, 39(10): 1554-1563. |
[13] | Ying CHEN, Tian-Ding HU, Yun-Li LIU, Pu ZHANG, Yun-Fei ZHI, Shao-Yun SHAN. Research Progress on Chemical Resourse Utilization of Sulfur Dioxide [J]. Chinese Journal of Applied Chemistry, 2022, 39(02): 223-234. |
[14] | HU Xiao-Hua, XIONG Shi-Sheng. Advanced Lithography: Directed Self-Assembly [J]. Chinese Journal of Applied Chemistry, 2021, 38(9): 1029-1078. |
[15] | LI Xiao-Ou, GU Xue-Song, LIU Ya-Dong, JI Sheng-Xiang. Research Progress on Chemically Amplified 193 nm Photoresists [J]. Chinese Journal of Applied Chemistry, 2021, 38(9): 1105-1118. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||