Chinese Journal of Applied Chemistry ›› 2021, Vol. 38 ›› Issue (10): 1299-1309.DOI: 10.19894/j.issn.1000-0518.210316
• Review • Previous Articles Next Articles
Shuai ZHANG1, Yang YANG2, Yan JI1(), Yen WEI1()
Received:
2021-06-28
Accepted:
2021-08-12
Published:
2021-10-01
Online:
2021-10-15
Contact:
Yan JI,Yen WEI
About author:
jiyan@mail.tsinghua.edu.cn; weiyen@tsinghua.edu.cn;Supported by:
CLC Number:
Shuai ZHANG, Yang YANG, Yan JI, Yen WEI. Research Process on Magneto⁃responsive Liquid Crystalline Elastomers[J]. Chinese Journal of Applied Chemistry, 2021, 38(10): 1299-1309.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.210316
Fig.2 Confocal images of the magneto-responsive LCEs with different Fe3O4 particle contents and viability ratio of NIH3T3 fibroblasts growing on collagen coated LCEs[41]A. Confocal images of the magneto-responsive LCEs with mass percent 0.2 % particle content (a—c); Confocal images of the magneto-responsive LCEs with mass percent 0.5 % particle content (d—f); B. Viability ratio of NIH3T3 fibroblasts growing on collagen coated LCEs
Fig.3 Magnetic movement of magneto-responsive LCE particles[56]A.Circle-like movement of a photoresponsive magneto-responsive LCE particle and reversible photoresponsive photoactuation of 12.6% at 70 ℃. B.Circle-like transportation of a piece of plastic of a thermoresponsive magneto-responsive LCE particle
Fig. 4 Magneto-responsive LCEs hat can self-adapt to a changing environment[58]A.An untethered in situ reconfgurable soft miniature machine that self-adapts to different environments/terrains by exhibiting distinct locomotion modes; B.Experimental demonstrations of a vine-plant-inspired flament and a reconfgurable magnetic spring
Fig. 5 Magnetic nanoparticles modified by chemical groups are bonded to LCEs[63-64,66]A.Schematic representation of the LC-attached ferrite composite; B.Quasi-spherical oleate-coated ferrite nanoparticles; C.Depiction of magnetic LCEs synthesis and fnal structure
Fig. 6 Magnetic response is employed to conduct the different locomotions[69-70]A.Schematic illustration of the cargo pick up, transport, rotation, and release of the untethered rotational soft robotic gripper. B.Complex dual-responsive shape-morphing behaviors of the bimorph material in response to the external temperature change and magnetic field, applied separated and concurrently
1 | OHM C, BREHMER M, ZENTEL R. Liquid crystalline elastomers as actuators and sensors[J]. Adv Mater, 2010, 22(31): 3366-3387. |
2 | JIANG H R, LI C S, HUANG X Z. Actuators based on liquid crystalline elastomer materials[J]. Nanoscale, 2013, 5: 5225-5240. |
3 | LU H F, WANG M, CHEN X M, et al. Interpenetrating liquid-crystal polyurethane/polyacrylate elastomer with ultrastrong mechanical property[J]. J Am Chem Soc, 2019, 141(36): 14364-14369. |
4 | WARE T H, MCCONNEY M E, WIE J J, et al. Voxelated liquid crystal elastomers[J]. Science, 2015, 347(6225): 982-984. |
5 | WHITE T J, BROER D J. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers[J]. Nat Mater, 2015, 14: 1087-1098. |
6 | BARNES M, VERDUZCO R. Direct shape programming of liquid crystal elastomers[J]. Soft Matter, 2019, 15: 870-879. |
7 | LEE J, GUO Y, CHOI Y J, et al. Mechanically programmed 2D and 3D liquid crystal elastomers at macro- and microscale via two-step photocrosslinking[J]. Soft Matter, 2020, 16: 2695-2705. |
8 | PEI Z Q, YANG Y, CHEN Q M, et al. Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds[J]. Nat Mater, 2014, 13: 36-41. |
9 | TAJBAKHSH A, TERENTJEV E. Spontaneous thermal expansion of nematic elastomers[J]. Eur Phys J E, 2001, 6: 181-188. |
10 | KüUPFER J, FINKELMANN H. Liquid crystal elastomers: influence of the orientational distribution of the crosslinks on the phase behaviour and reorientation processes[J]. Macromol Chem Phys, 1994, 195: 1353-1367. |
11 | OOSTEN C LVAN, BASTIAANSEN C W, BROER D J. Printed artificial cilia from liquid-crystal network actuators modularly driven by light[J]. Nat Mater, 2009, 8: 677-682. |
12 | YANG H, BUGUIN A, J-MTAULEMESSE, et al. Micron-sized main-chain liquid crystalline elastomer actuators with ultralarge amplitude contractions[J]. J Am Chem Soc, 2009, 131(41): 15000-15004. |
13 | OHM C, SERRA C, ZENTEL R. A continuous flow synthesis of micrometer‐sized actuators from liquid crystalline elastomers[J]. Adv Mater, 2009, 21(47): 4859-4862. |
14 | PANG X L, LV J A, ZHU C Y, et al. Photodeformable azobenzene-containing liquid crystal polymers and soft actuators[J]. Adv Mater, 2019, 31(52): 1904224. |
15 | HE Q G, WANG Z J, WANG Y, et al. Electrically controlled liquid crystal elastomer-based soft tubular actuator with multimodal actuation[J]. Sci Adv, 2019, 5(10): 7. |
16 | XIAO Y Y, JIANG Z C, TONG X, et al. Biomimetic locomotion of electrically powered “Janus” soft robots using a liquid crystal polymer[J]. Adv Mater, 2019, 31(36): 9. |
17 | WINKLER M, KAISER A, KRAUSE S, et al. Liquid crystal elastomers with magnetic actuation[J]. Macromol Symp, 2010, 291-292: 186-192. |
18 | JI Y, MARSHALL J E, TERENTJEV E M. Nanoparticle-liquid crystalline elastomer composites[J]. Polymers, 2012, 4(1): 316-340. |
19 | KIM Y, YUK H, ZHAO R, et al. Printing ferromagnetic domains for untethered fast-transforming soft materials[J]. Nature, 2018, 558: 274-279. |
20 | ZHANG J, DILLER E. Untethered miniature soft robots: modeling and design of a millimeter-scale swimming magnetic sheet[J]. Soft Robot, 2018, 5: 761-776. |
21 | DILLER E, MIYASHITA S, SITTI M. Remotely addressable magnetic composite micropumps[J]. RSC Adv, 2012, 2: 3850-3856. |
22 | REN Z, HU W, DONG X, et al. Multi-functional soft-bodied jellyfish-like swimming[J]. Nat Commun, 2019, 10: 1-12. |
23 | PACCHIEROTTI C, ONGARO F,VAN DEN BRINK F, et al. Steering and control of miniaturized untethered soft magnetic grippers with haptic assistance[J]. IEEE T Autom Sci Eng, 2017, 15: 290-306. |
24 | 高晓松, 邱广明, 孙宗华, 等. Fe3O4/P(St-AA)核-壳复合微球的制备和表征[J]. 应用化学, 1996, 14(1): 6-9. |
GAO X S, QIU G M, SUN Z H, et al. Preparation and characterization of Fe3O4/P(St-AA) core-shell composite microspheres[J]. Chinese J Appl Chem, 1996, 14(1): 6-9. | |
25 | HU K, SUN J, GUO Z, et al. A novel magnetic hydrogel with aligned magnetic colloidal assemblies showing controllable enhancement of magnetothermal effect in the presence of alternating magnetic field[J]. Adv Mater, 2015, 27: 2507-2514. |
26 | MOHR R, KRATZ K, WEIGEL T, et al. Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers[J]. Proc Natl Acad Sci USA, 2006, 103: 3540-3545. |
27 | TANG J, TONG Z, XIA Y, et al. Super tough magnetic hydrogels for remotely triggered shape morphing[J]. J Mater Chem B, 2018, 6: 2713-2722. |
28 | TANG J, YIN Q, QIAO Y, et al. Shape morphing of hydrogels in alternating magnetic field[J]. ACS Appl Mater Interfaces, 2019, 11: 21194-21200. |
29 | RAZZAQ M Y, BEHL M, LENDLEIN A. Memory-effects of magnetic nanocomposites[J]. Nanoscale, 2012, 4: 6181-6195. |
30 | SCHMIDT A M. Electromagnetic activation of shape memory polymer networks containing magnetic nanoparticles[J]. Macromol Rapid Commun, 2006, 27: 1168-1172. |
31 | ZHANG S, ZHANG Y, WU Y, et al. A magnetic solder for assembling bulk covalent adaptable network blocks[J]. Chem Sci, 2020, 11: 7694-7700. |
32 | KAISER A, WINKLER M, KRAUSE S, et al. Magnetoactive liquid crystal elastomer nanocomposites[J]. J Mater Chem, 2009, 19: 538-543. |
33 | MASSART R, CABUIL V. Effect of some parameters on the formation of colloidal magnetite in alkaline-medium-yield and particle-size control[J]. J Chim Phys PCB, 1987, 84: 967-973. |
34 | KÜPFER J, FINKELMANN H. Nematic liquid single crystal elastomers[J]. Chem Rapid Commun, 1991, 12: 717-726. |
35 | DAVIS K A, BURKE K A, MATHER P T, et al. Dynamic cell behavior on shape memory polymer substrates[J]. Biomaterials, 2011, 32: 2285-2293. |
36 | BERA T, FREEMAN E J, MCDONOUGH J A, et al. Liquid crystal elastomer microspheres as three-dimensional cell scaffolds supporting the attachment and proliferation of myoblasts[J]. ACS Appl Mater Interfaces, 2015, 7: 14528-14535. |
37 | YANG P, BAKER R M, HENDERSON J H, et al. In vitro wrinkle formation via shape memory dynamically aligns adherent cells[J]. Soft Matter, 2013, 9: 4705-4714. |
38 | GOPALAN S M, FLAIM C, BHATIA S N, et al. Anisotropic stretch-induced hypertrophy in neonatal ventricular myocytes micropatterned on deformable elastomers[J]. Biotechnol Bioeng, 2003, 81: 578-587. |
39 | WESTCOTT N P, LUO W, GOLDSTEIN J, et al. Dynamic 3D cell culture via a chemoselective photoactuated ligand[J]. Biointerphases, 2014, 9: 031005. |
40 | MAYER M, RABINDRANATH R, BOERNER J, et al. Ultra-soft pdms-based magnetoactive elastomers as dynamic cell culture substrata[J]. Plos One, 2013, 8: No.e76196. |
41 | HERRERA-POSADA S, MORA-NAVARRO C, ORTIZ-BERMUDEZ P, et al. Magneto-responsive liquid crystalline elastomer nanocomposites as potential candidates for dynamic cell culture substrates[J]. Mater Sci Eng: C, 2016, 65: 369-378. |
42 | DRURY J L, MOONEY D J. Hydrogels for tissue engineering: scaffold design variables and applications[J]. Biomaterials, 2003, 24: 4337-4351. |
43 | RANDALL C L, GULTEPE E, GRACIAS D H. Self-folding devices and materials for biomedical applications[J]. Trends Biotechnol, 2012, 30: 138-146. |
44 | MA M, GUO L, ANDERSON D G, et al. Bio-inspired polymer composite actuator and generator driven by water gradients[J]. Science, 2013, 339: 186-189. |
45 | RUS D, TOLLEY M T. Design, fabrication and control of soft robots[J]. Nature, 2015, 521: 467-475. |
46 | KUENSTLER A S, CHEN Y, BUI P, et al. Blueprinting photothermal shape-morphing of liquid crystal elastomers[J]. Adv Mater, 2020, 32: 2000609. |
47 | LIU L, LIU M H, DENG L L, et al. Near-infrared chromophore functionalized soft actuator with ultrafast photoresponsive speed and superior mechanical property[J]. J Am Chem Soc, 2017, 139(33): 11333-11336. |
48 | WANG M, LIN B P, YANG H. A plant tendril mimic soft actuator with phototunable bending and chiral twisting motion modes[J]. Nat Commun, 2016, 7: 1-8. |
49 | YANG Y, PEI Z, LI Z, et al. Making and remaking dynamic 3D structures by shining light on flat liquid crystalline vitrimer films without a mold[J]. J Am Chem Soc, 2016, 138: 2118-2121. |
50 | WANG Y, DANG A, ZHANG Z, et al. Repeatable and reprogrammable shape morphing from photoresponsive gold nanorod/liquid crystal elastomers[J]. Adv Mater, 2020, 32: 2004270. |
51 | LIU J A C, GILLEN J H, MISHRA S R, et al. Photothermally and magnetically controlled reconfiguration of polymer composites for soft robotics[J]. Sci Adv, 2019, 5: eaaw2897. |
52 | ZHANG D, ZHANG J, JIAN Y, et al. Multi-field synergy manipulating soft polymeric hydrogel transformers[J]. Adv Intell Syst, 2021, 3: 2000208. |
53 | LI C, LAU G C, YUAN H, et al. Fast and programmable locomotion of hydrogel-metal hybrids under light and magnetic fields[J]. Sci Robot, 2020, 5: eabb9822. |
54 | KLÖCKNER B, DANIEL P, BREHMER M, et al. Liquid crystalline phases from polymer functionalized ferri-magnetic Fe3O4 nanorods[J]. J Mater Chem C, 2017, 5: 6688-6696. |
55 | 董川, 焦媛, 刘付永, 等. 磁性纳米复合物的制备及对铜离子(Ⅱ)的传感检测[J]. 应用化学, 2017, 34(1): 111-117. |
DONG C, JIAO Y, LIU F Y, et al. Synthesis of magnetic nanocomposites and sensitive detection for copper(Ⅱ)[J]. Chinese J Appl Chem, 2017, 34(1): 111-117. | |
56 | DITTER D, BLÜMLER P, KLÖCKNER B, et al. Microfluidic synthesis of liquid crystalline elastomer particle transport systems which can be remote-controlled magnetically[J]. Adv Funct Mater, 2019, 29: 1902454. |
57 | BAUN O, BLÜMLER P. Permanent magnet system to guide superparamagnetic particles[J]. J Magn Magn Mater, 2017, 439: 294-304. |
58 | ZHANG J, GUO Y, HU W, et al. Liquid crystal elastomer-based magnetic composite films for reconfigurable shape-morphing soft miniature machines[J]. Adv Mater, 2021, 33: 2006191. |
59 | XU C, XU K, GU H, et al. Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles[J]. J Am Chem Soc, 2004, 126(32): 9938-9939. |
60 | NAM J M, THAXTON C S, MIRKIN C A. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins[J]. Science, 2003, 301: 1884-1886. |
61 | GILLAIZEAU-GAUTHIER I, ODOBEL F, ALEBBI M, et al. Phosphonate-based bipyridine dyes for stable photovoltaic devices[J]. Inorg Chem, 2001, 40: 6073-6079. |
62 | CHEN L X, LIU T, THURNAUER M C, et al. Fe2O3 nanoparticle structures investigated by X-ray absorption near-edge structure, surface modifications, and model calculations[J]. J Phys Chem B, 2002, 106: 8539-8546. |
63 | SONG H M, KIM J C, HONG J H, et al. Magnetic and transparent composites by linking liquid crystals to ferrite nanoparticles through covalent networks[J]. Adv Funct Mater, 2007, 17: 2070-2076. |
64 | GARCIA-MARQUEZ A, DEMORTIERE A, HEINRICH B, et al. Iron oxide nanoparticle-containing main-chain liquid crystalline elastomer: towards soft magnetoactive networks[J]. J Mater Chem, 2011, 21: 8994- 8996. |
65 | HABERL J M, SÁNCHEZ‐FERRER A, MIHUT A M, et al. Liquid‐crystalline elastomer‐nanoparticle hybrids with reversible switch of magnetic memory[J]. Adv Mater, 2013, 25: 1787-1791. |
66 | CMOK L, VILFAN M, GYERGYEK S, et al. Magnetic polydomain liquid crystal elastomers-synthesis and characterisation[J]. Liq Cryst, 2021, DOI: 10.1080/02678292.2021.1901149. |
67 | AGRAWAL A, YUN T, PESEK S L, et al. Shape-responsive liquid crystal elastomer bilayers[J]. Soft Matter, 2014, 10: 1411-1415. |
68 | YUAN C, DING Z, WANG T, et al. Shape forming by thermal expansion mismatch and shape memory locking in polymer/elastomer laminates[J]. Smart Mater Struct, 2017, 26: 105027. |
69 | DA CUNHA M P, FOELEN Y, VAN RAAK R J H, et al. An untethered magnetic- and light-responsive rotary gripper: shedding light on photoresponsive liquid crystal actuators[J]. Adv Opt Mater, 2019, 7: 1801643. |
70 | ZHANG J, GUO Y, HU W, et al. Wirelessly actuated thermo‐ and magneto‐responsive soft bimorph materials with programmable shape‐morphing[J]. Adv Mater, 2021, 33: 2100336. |
[1] | Ye LIU, Shao-Bo GUO, Yan-Li LIANG, Hong-Guang GE, Jian-Qi MA, Zhi-Feng LIU, Bo LIU. Preparation and Catalytic Performance of Core‑Shell CuFe2O4@NH2@Pt Nanocomposites [J]. Chinese Journal of Applied Chemistry, 2022, 39(8): 1237-1245. |
[2] | He-Chang SHI, Yan-Cun YU, Chang-Yu HAN. Morphology, Rheological and Mechanical Properties of Polyethylene/Aluminium Oxide Composites [J]. Chinese Journal of Applied Chemistry, 2022, 39(10): 1593-1599. |
[3] | LI Yi, CHENG Hong-Da, YU Yan-Cun, HAN Chang-Yu, CHEN Guang-Jian, ZHU Ying-Nan. Performance of Thermal Conductive High Density Polyethylene Composite [J]. Chinese Journal of Applied Chemistry, 2021, 38(8): 954-960. |
[4] | ZHAO Yun-Xiao, WANG Guang-Xin, CHEN You-Xu, ZHAO Gui-Yan. Research Progress on Preparation and Properties of Polymer/Starch Composites [J]. Chinese Journal of Applied Chemistry, 2021, 38(11): 1432-1440. |
[5] | Cheng ZOU, Yan-Zi GAO, Mei-Na YU, Jiu-Mei XIAO, Lan-Ying ZHANG, Huai YANG. Recent Advances in Liquid Crystal/Polymer Composites and Their Applications in Reverse⁃mode Electrically Switchable Light⁃transmittance Controllable Films [J]. Chinese Journal of Applied Chemistry, 2021, 38(10): 1213-1225. |
[6] | Dan WANG, Hai-Yan PENG, Xing-Ping ZHOU, Xiao-Lin XIE. Research Progress of Holographic Polymer/Liquid Crystal Composites [J]. Chinese Journal of Applied Chemistry, 2021, 38(10): 1268-1298. |
[7] | Jun-Wei GU, Bei CHENG, Xu-Tong YANG. Liquid Crystal Functionalized Boron Nitride Fillers/Liquid Crystal Epoxy Thermally Conductive Composites [J]. Chinese Journal of Applied Chemistry, 2021, 38(10): 1382-1388. |
[8] | GAO Limin, LI Lu, ZHOU Guangyuan, WANG Honghua, ZHU Zhongli. Preparation and Properties of Siliceous Earth/ Phenolphthalein-Based Poly(arylene ether sulfone) Composites [J]. Chinese Journal of Applied Chemistry, 2020, 37(5): 524-530. |
[9] | ZHANG Lu, WANG Haichang, LI Hua, WANG Huijun, HUI Linhai, PENG Meiling, ZHU Yutian. Progress of Recycling of Carbon Fiber/Resin Composites via Supercritical Fluid [J]. Chinese Journal of Applied Chemistry, 2020, 37(12): 1357-1363. |
[10] | ZHAO Liu, SONG Shengjie, MA Kangfu, WANG Hong, FU Lihua, LIU Xinyang, CHEN Lidong, CHENG Weiguo. Adsorption-Oxidative Desulfurization Performance of Core-Shell Polyoxometalate/Magnetic Cerium-Iron Nanocomposite Oxide@SiO2 [J]. Chinese Journal of Applied Chemistry, 2020, 37(12): 1457-1464. |
[11] | ZHANG Xinyu, QU Jiangying, TANG Zhanlei, LI Jielan, WANG Tao, GAO Feng. In Situ Synthesis of Nitrogen-Doped Carbon Coated CoxP Composites and Their Lithium Properties [J]. Chinese Journal of Applied Chemistry, 2020, 37(10): 1172-1180. |
[12] | ZHANG Pan, ZHOU Kui, CHAEMCHUEN Somboon, CHEN Cheng, VERPOORT Francis. Progress of Metal Oxide and Metal-Organic Framework Composite Materials [J]. Chinese Journal of Applied Chemistry, 2018, 35(4): 369-380. |
[13] | LICHEN Haoyang, CUI Xihua, JIANG Wei, CHEN Bin. Preparation and Properties of the Poly(propylene carbonate)/Straw Flour Composites Compatibilized with Chlorided Poly(propylene carbonate) [J]. Chinese Journal of Applied Chemistry, 2017, 34(7): 744-748. |
[14] | GUAN Xiaolin, JIA Tianming, QIN Yuxin, ZHANG Donghai, ZHANG Yang, FAN Hongting, WEI Qiangbing, LAI Shoujun. Aqueous Synthesis of Thiol-functionalized Polyvinylalcohol/CdS Quantum Dots Nanocomposite at Low Temperature for Detection of Trace Cu2+ in Water [J]. Chinese Journal of Applied Chemistry, 2017, 34(3): 291-299. |
[15] | CHU Chengcan,SU Zhaohui. Recent Progress in the Synthesis and Catalytic Application of Polymer-Supported Nanomaterials [J]. Chinese Journal of Applied Chemistry, 2016, 33(4): 379-390. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||