[1] | Rogers J A,Someya T,Huang Y G.Materials and Mechanics for Stretchable Electronics[J]. Science,2010,327(5973):1603-1607. | [2] | Ramuz M,Tee B C K,Tok J B H,et al. Transparent, Optical, Pressure-sensitive Artificial Skin for Large-area Stretchable Electronics[J]. Adv Mater,2012,24(24):3223-3227. | [3] | Majumder S,Mondal T,Deen M J.Wearable Sensors for Remote Health Monitoring[J]. Sensors,2017,17(1):130. | [4] | Larson C,Peele B,Li S,et al.Highly Stretchable Electroluminescent Skin for Optical Signaling and Tactile Sensing[J]. Science,2016,351(6277):1071-1074. | [5] | Weng W,Chen P N,He S S,et al.Smart Electronic Textiles[J]. Angew Chem Int Ed,2016,55(21):6140-6169. | [6] | Gao Y,Ota H,Schaler E W,et al.Wearable Microfluidic Diaphragm Pressure Sensor for Health and Tactile Touch Monitoring[J]. Adv Mater,2017,29(39):1701985. | [7] | Xie K Y,Wei B Q.Materials and Structures for Stretchable Energy Storage and Conversion Devices[J]. Adv Mater,2014,26(22):3592-3617. | [8] | Hu Y H,Sun X L.Flexible Rechargeable Lithium Ion Batteries:Advances and Challenges in Materials and Process Technologies[J]. J Mater Chem A,2014,2(28):10712-10738. | [9] | Chen T,Peng H S,Durstock M,et al.High-performance Transparent and Stretchable All-solid Supercapacitors Based on Highly Aligned Carbon Nanotube Sheets[J]. Sci Rep,2014,4:3612. | [10] | Lv T,Yao Y,Li N,et al.Wearable Fiber-shaped Energy Conversion and Storage Devices Based on Aligned Carbon Nanotubes[J]. Nano Today,2016,11(5):644-660. | [11] | Chen T,Dai L M.Flexible Supercapacitors Based on Carbon Nanomaterials[J]. J Mater Chem A,2014,2(28):10756-10775. | [12] | Lv T,Yao Y,Li N,et al.Highly Stretchable Supercapacitors Based on Aligned Carbon Nanotube/Molybdenum Disulfide Composites[J]. Angew Chem Int Ed,2016,55(32):9191-9195. | [13] | Chen T,Hao R,Peng H S,et al.High-Performance, Stretchable, Wire-shaped Supercapacitors[J]. Angew Chem Int Ed,2015,54(2):618-622. | [14] | Wen L,Li F,Cheng H M.Carbon Nanotubes and Graphene for Flexible Electrochemical Energy Storage: From Materials to Devices[J]. Adv Mater,2016,28(22):4306-4337. | [15] | Ren W C,Cheng H M.The Global Growth of Graphene[J]. Nat Nanotechnol,2014,9(10):726-730. | [16] | Bonaccorso F,Colombo L,Yu G H,et al.Graphene, Related Two-dimensional Crystals, and Hybrid Systems for Energy Conversion and Storage[J]. Science,2015,347(6217):1246501. | [17] | Li N,Lv T,Yao Y,et al.Compact Graphene/MoS2 Composite Films for Highly Flexible and Stretchable All-solid-state Supercapacitors[J]. J Mater Chem A,2017,5(7):3267-3273. | [18] | Xiao F,Yang S X,Zhang Z Y,et al.Scalable Synthesis of Freestanding Sandwich-structured Graphene/Polyaniline/Graphene Nanocomposite Paper for Flexible All-solid-state Supercapacitor[J]. Sci Rep,2015,5:9359. | [19] | Dong Y F,Wu Z S,Ren W C,et al.Graphene:A Promising 2D Material for Electrochemical Energy Storage[J]. Sci Bull,2017,62(10):724-740. | [20] | Novoselov K S,Fal'ko V I,Colombo L,et al. A Roadmap for Graphene[J]. Nature,2012,490(7419):192-200. | [21] | Xu Z,Peng L,Liu Y J,et al.Experimental Guidance to Graphene Macroscopic Wet-spun Fibers, Continuous Papers, and Ultralightweight Aerogels[J]. Chem Mater,2017,29(1):319-330. | [22] | Xu Z,Gao C.Graphene Fiber:A New Trend in Carbon Fibers[J]. Mater Today,2015,18(9):480-492. | [23] | Yang Z B,Sun H,Chen T,et al.Photovoltaic Wire Derived from a Graphene Composite Fiber Achieving an 8.45% Energy Conversion Efficiency[J]. Angew Chem Int Ed,2013,52(29):7545-7548. | [24] | Meng F C,Lu W B,Li Q W,et al.Graphene-based Fibers:A Review[J]. Adv Mater,2015,27(35):5113-5131. | [25] | Xu Z,Liu Y J,Zhao X L,et al.Ultrastiff and Strong Graphene Fibers via Full-scale Synergetic Defect Engineering[J]. Adv Mater,2016,28(30):6449-6456. | [26] | Xu Z,Gao C.Graphene Chiral Liquid Crystals and Macroscopic Assembled Fibres[J]. Nat Commun,2011,2:571. | [27] | Liu Y J,Xu Z,Zhan J M,et al.Superb Electrically Conductive Graphene Fibers via Doping Strategy[J]. Adv Mater,2016,28(36):7941-7947. | [28] | Xin G Q,Yao T K,Sun H T,et al.Highly Thermally Conductive and Mechanically Strong Graphene Fibers[J]. Science,2015,349(6252):1083-1087. | [29] | Li X M,Zhao T S,Wang K L,et al.Directly Drawing Self-assembled, Porous, and Monolithic Graphene Fiber from Chemical Vapor Deposition Grown Graphene Film and Its Electrochemical Properties[J]. Langmuir,2011,27(19):12164-12171. | [30] | Chen T,Dai L M.Macroscopic Graphene Fibers Directly Assembled from CVD-grown Fiber-shaped Hollow Graphene Tubes[J]. Angew Chem Int Ed,2015,54(49):14947-14950. | [31] | Eda G,Fanchini G,Chhowalla M.Large-area Ultrathin Films of Reduced Graphene Oxide as a Transparent and Flexible Electronic Material[J]. Nat Nanotechnol,2008,3(5):270-274. | [32] | Eigler S,Enzelberger-Heim M,Grimm S,et al.Wet Chemical Synthesis of Graphene[J]. Adv Mater,2013,25(26):3583-3587. | [33] | Liu L H,Lyu J,Zhao T K,et al.Large Area Preparation of Multilayered Graphene Films by Chemical Vapour Deposition with High Electrocatalytic Activity Toward Hydrogen Peroxide[J]. Mater Technol,2015,30(A3):A121-A126. | [34] | Kumar P,Shahzad F,Yu S,et al.Large-area Reduced Graphene Oxide Thin Film with Excellent Thermal Conductivity and Electromagnetic Interference Shielding Effectiveness[J]. Carbon,2015,94:494-500. | [35] | Xiong Z Y,Liao C L,Han W H,et al.Mechanically Tough Large-area Hierarchical Porous Graphene Films for High-performance Flexible Supercapacitor Applications[J]. Adv Mater,2015,27(30):4469-4475. | [36] | Zhang M,Huang L,Chen J,et al.Ultratough, Ultrastrong, and Highly Conductive Graphene Films with Arbitrary Sizes[J]. Adv Mater,2014,26(45):7588-7592. | [37] | Peng L,Xu Z,Liu Z,et al.Ultrahigh Thermal Conductive yet Superflexible Graphene Films[J]. Adv Mater,2017,29(27):1700589. | [38] | Kim K S,Zhao Y,Jang H,et al.Large-scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes[J]. Nature,2009,457(7230):706-710. | [39] | Li X S,Cai W W,An J H,et al.Large-area Synthesis of High-quality and Uniform Graphene Films on Copper Foils[J]. Science,2009,324(5932):1312-1314. | [40] | Wang M,Jang S K,Jang W J,et al.A Platform for Large-scale Graphene Electronics-CVD Growth of Single-layer Graphene on CVD-grown Hexagonal Boron Nitride[J]. Adv Mater,2013,25(19):2746-2752. | [41] | Tan R K L,Reeves S P,Hashemi N,et al. Graphene as a Flexible Electrode:Review of Fabrication Approaches[J]. J Mater Chem A,2017,5(34):17777-17803. | [42] | Jiang W,Xin H,Li W.Microcellular 3D Graphene Foam via Chemical Vapor Deposition of Electroless Plated Nickel Foam Templates[J]. Mater Lett,2016,162:105-109. | [43] | Deng W,Fang Q L,Zhou X F,et al.Hydrothermal Self-assembly of Graphene Foams with Controllable Pore Size[J]. RSC Adv,2016,6(25):20843-20849. | [44] | Liu T,Huang M L,Li X F,et al.Highly Compressible Anisotropic Graphene Aerogels Fabricated by Directional Freezing for Efficient Absorption of Organic Liquids[J]. Carbon,2016,100:456-464. | [45] | Zhang Q Q,Zhang F,Medarametla S P,et al.3D Printing of Graphene Aerogels[J]. Small,2016,12(13):1702-1708. | [46] | Lv J L,Meng Y,Suzuki K,et al.Fabrication of 3D Graphene Foam for a Highly Conducting Electrode[J]. Mater Lett,2017,196:369-372. | [47] | Chen Z P,Ren W C,Gao L B,et al.Three-dimensional Flexible and Conductive Interconnected Graphene Networks Grown by Chemical Vapour Deposition[J]. Nat Mater,2011,10(6):424-428. | [48] | Du X S,Liu H Y,Mai Y W.Ultrafast Synthesis of Multifunctional N-Doped Graphene Foam in an Ethanol Flame[J]. ACS Nano,2016,10(1):453-462. | [49] | Lv L X,Zhang P P,Cheng H H,et al.Solution-processed Ultraelastic and Strong Air-bubbled Graphene Foams[J]. Small,2016,12(24):3229-3234. | [50] | Zhu Y W,Murali S,Stoller M D,et al.Carbon-based Supercapacitors Produced by Activation of Graphene[J]. Science,2011,332(6037):1537-1541. | [51] | Zhu J Y,Childress A S,Karakaya M,et al.Defect-engineered Graphene for High-energy- and High-power-density Supercapacitor Devices[J]. Adv Mater,2016,28(33):7185-7192. | [52] | Wu Z S,Winter A,Chen L,et al.Three-dimensional Nitrogen and Boron Co-doped Graphene for High-performance All-solid-state Supercapacitors[J]. Adv Mater,2012,24(37):5130-5135. | [53] | Choi B G,Chang S J,Kang H W,et al.High Performance of a Solid-state Flexible Asymmetric Supercapacitor Based on Graphene Films[J]. Nanoscale,2012,4(16):4983-4988. | [54] | El-Kady M F,Strong V,Dubin S,et al. Laser Scribing of High-performance and Flexible Graphene-based Electrochemical Capacitors[J]. Science,2012,335(6074):1326-1330. | [55] | Chen X L,Lin H J,Deng J,et al.Electrochromic Fiber-shaped Supercapacitors[J]. Adv Mater,2014,26(48):8126-8132. | [56] | Yang Z B,Deng J,Chen X L,et al.A Highly Stretchable, Fiber-shaped Supercapacitor[J]. Angew Chem Int Ed,2013,52(50):13453-13457. | [57] | Hu Y,Cheng H H,Zhao F,et al.All-in-One Graphene Fiber Supercapacitor[J]. Nanoscale,2014,6(12):6448-6451. | [58] | Yu D S,Goh K,Wang H,et al.Scalable Synthesis of Hierarchically Structured Carbon Nanotube-graphene Fibres for Capacitive Energy Storage[J]. Nat Nanotechnol,2014,9(7):555-562. | [59] | Zhao X L,Zheng B N,Huang T Q,et al.Graphene-based Single Fiber Supercapacitor with a Coaxial Structure[J]. Nanoscale,2015,7(21):9399-9404. | [60] | Luo Y F,Zhang Y,Zhao Y,et al.Aligned Carbon Nanotube/Molybdenum Disulfide Hybrids for Effective Fibrous Supercapacitors and Lithium Ion Batteries[J]. J Mater Chem A,2015,3(34):17553-17557. | [61] | Sheng L Z,Wei T,Liang Y,et al.Vertically Oriented Graphene Nanoribbon Fibers for High-volumetric Energy Density All-solid-state Asymmetric Supercapacitors[J]. Small,2017,13(22):1700371. | [62] | Meng Y N,Zhao Y,Hu C G,et al.All-graphene Core-sheath Microfibers for All-solid-state, Stretchable Fibriform Supercapacitors and Wearable Electronic Textiles[J]. Adv Mater,2013,25(16):2326-2331. | [63] | Kou L,Huang T Q,Zheng B N,et al.Coaxial Wet-spun Yarn Supercapacitors for High-energy Density and Safe Wearable Electronics[J]. Nat Commun,2014,5:3754. | [64] | Chen S B,Wang L,Huang M M,et al.Reduced Graphene Oxide/Mn3O4 Nanocrystals Hybrid Fiber for Flexible All-solid-state Supercapacitor with Excellent Volumetric Energy Density[J]. Electrochim Acta,2017,242:10-18. | [65] | Ding X T,Zhao Y,Hu C G,et al.Spinning Fabrication of Graphene/Polypyrrole Composite Fibers for All-solid-state, Flexible Fibriform Supercapacitors[J]. J Mater Chem A,2014,2(31):12355-12360. | [66] | Qu G X,Cheng J L,Li X D,et al.A Fiber Supercapacitor with High Energy Density Based on Hollow Graphene/Conducting Polymer Fiber Electrode[J]. Adv Mater,2016,28(19):3646-3652. | [67] | Sun G Z,Zhang X,Lin R Z,et al.Hybrid Fibers Made of Molybdenum Disulfide, Reduced Graphene Oxide, and Multi-walled Carbon Nanotubes for Solid-State, Flexible, Asymmetric Supercapacitors[J]. Angew Chem Int Ed,2015,54(15):4651-4656. | [68] | Zhang D,Miao M,Niu H,et al.Core-Spun Carbon Nanotube Yarn Supercapacitors for Wearable Electronic Textiles[J]. ACS Nano,2014,8(5):4571-4579. | [69] | Yao B,Zhang J,Kou T Y,et al.Paper-based Electrodes for Flexible Energy Storage Devices[J]. Adv Sci,2017,4(7):1700107. | [70] | Mosa I M,Pattammattel A,Kadimisetty K,et al.Ultrathin Graphene-protein Supercapacitors for Miniaturized Bioelectronics[J]. Adv Energy Mater,2017,7(17):1700358. | [71] | Peng L L,Peng X,Liu B R,et al.Ultrathin Two-dimensional MnO2/Graphene Hybrid Nanostructures for High-performance, Flexible Planar Supercapacitors[J]. Nano Lett,2013,13(5):2151-2157. | [72] | Chen T,Dai L M.Carbon Nanomaterials for High-performance Supercapacitors[J]. Mater Today,2013,16(7/8):272-280. | [73] | Bettini L G,Galluzzi M,Podesta A,et al.Planar Thin Film Supercapacitor Based on Cluster-assembled Nanostructured Carbon and Ionic Liquid Electrolyte[J]. Carbon,2013,59:212-220. | [74] | Yoo J J,Balakrishnan K,Huang J S,et al.Ultrathin Planar Graphene Supercapacitors[J]. Nano Lett,2011,11(4):1423-1427. | [75] | Li M,Tang Z,Leng M,et al.Flexible Solid-state Supercapacitor Based on Graphene-based Hybrid Films[J]. Adv Funct Mater,2014,24(47):7495-7502. | [76] | Li F W,Chen J T,Wang X S,et al.Stretchable Supercapacitor with Adjustable Volumetric Capacitance Based on 3D Interdigital Electrodes[J]. Adv Funct Mater,2015,25(29):4601-4606. | [77] | Jo K,Lee S,Kim S M,et al.Stacked Bilayer Graphene and Redox-active Interlayer for Transparent and Flexible High-performance Supercapacitors[J]. Chem Mater,2015,27(10):3621-3627. | [78] | Wu Z S,Zheng Y J,Zheng S H,et al.Stacked-layer Heterostructure Films of 2D Thiophene Nanosheets and Graphene for High-rate All-solid-state Pseudocapacitors with Enhanced Volumetric Capacitance[J]. Adv Mater,2017,29(3):1602960. | [79] | Chen T,Xue Y H,Roy A K,et al.Transparent and Stretchable High-performance Supercapacitors Based on Wrinkled Graphene Electrodes[J]. ACS Nano,2014,8(1):1039-1046. | [80] | Hong J Y,Kim W,Cho D,et al.Omnidirectionally Stretchable and Transparent Graphene Electrodes[J]. ACS Nano,2016,10(10):9446-9455. | [81] | Xu Y,Lin Z,Huang X,et al.Flexible Solid-State Supercapacitors Based on Three-Dimensional Grahene Hydrogel Films[J]. ACS Nano,2013,7(5):4042-4049. | [82] | Yuan K,Guo-Wang P,Hu T,et al.Nanofibrous and Graphene-templated Conjugated Microporous Polymer Materials for Flexible Chemosensors and Supercapacitors[J]. Chem Mater,2015,27(21):7403-7411. | [83] | Yuan K,Hu T,Xu Y,et al.Engineering the Morphology of Carbon Materials:2D Porous Carbon Nanosheets for High-performance Supercapacitors[J]. ChemElectroChem,2016,3(5):822-828. | [84] | Yuan K,Xu Y,Uihlein J,et al.Straightforward Generation of Pillared, Microporous Graphene Frameworks for Use in Supercapacitors[J]. Adv Mater,2015,27(42):6714-6721. | [85] | Qi D,Liu Y,Liu Z,et al.Design of Architectures and Materials in In-plane Micro-supercapacitors:Current Status and Future Challenges[J]. Adv Mater,2017,29(5):1602802. | [86] | Kyeremateng N A,Brousse T,Pech D.Microsupercapacitors as Miniaturized Energy-storage Components for On-chip Electronics[J]. Nat Nanotechnol,2017,12(1):7-15. | [87] | Liu L L,Niu Z Q,Chen J.Design and Integration of Flexible Planar Micro-supercapacitors[J]. Nano Res,2017,10(5):1524-1544. | [88] | Huang P,Lethien C,Pinaud S,et al.On-chip and Freestanding Elastic Carbon Films for Micro-supercapacitors[J]. Science,2016,351(6274):691-695. | [89] | Yun J,Kim D,Lee G,et al.All-solid-state Flexible Micro-supercapacitor Arrays with Patterned Graphene/MWNT Electrodes[J]. Carbon,2014,79:156-164. | [90] | Yu W,Zhou H,Li B Q,et al.3D Printing of Carbon Nanotubes-based Microsupercapacitors[J]. ACS Appl Mater Interfaces,2017,9(5):4597-4604. | [91] | Li J T,Delekta S S,Zhang P P,et al.Scalable Fabrication and Integration of Graphene Microsupercapacitors Through Full Inkjet Printing[J]. ACS Nano,2017,11(8):8249-8256. | [92] | Liu Z Y,Wu Z S,Yang S,et al.Ultraflexible In-plane Micro-supercapacitors by Direct Printing of Solution-processable Electrochemically Exfoliated Graphene[J]. Adv Mater,2016,28(11):2217-2222. | [93] | El-Kady M F,Kaner R B. Scalable Fabrication of High-power Graphene Micro-supercapacitors for Flexible and On-chip Energy Storage[J]. Nat Commun,2013,4:1475. | [94] | Zhang L,DeArmond D,Alvarez N T,et al. Flexible Micro-supercapacitor Based on Graphene with 3D Structure[J]. Small,2017,13(10):1603114. | [95] | Wu Z S,Parvez K,Feng X L,et al.Graphene-based In-plane Micro-supercapacitors with High Power and Energy Densities[J]. Nat Commun,2013,4:2487. | [96] | Liu Z Y,Liu S H,Dong R H,et al.High Power In-plane Micro-supercapacitors Based on Mesoporous Polyaniline Patterned Graphene[J]. Small,2017,13(14):1603388. | [97] | Zhang P P,Zhu F,Wang F X,et al.Stimulus-responsive Micro-supercapacitors with Ultrahigh Energy Density and Reversible Electrochromic Window[J]. Adv Mater,2017,29(7):1604491. | [98] | Qi D P,Liu Z Y,Liu Y,et al.Suspended Wavy Graphene Microribbons for Highly Stretchable Microsupercapacitors[J]. Adv Mater,2015,27(37):5559-5566. |
|