[1] | Novoselov K S,Geim A K,Morozov S V,et al.Two-Dimensional Gas of Massless Dirac Fermions in Graphene[J]. Nature,2005,438(7065):197-200. | [2] | Geim A K,Novoselov K S.The Rise of Graphene[J]. Nat Mater,2007,6(3):183-191. | [3] | Li X,Cai W,An J,et al.Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils[J]. Science,2009,324(5932):1312-1314. | [4] | Tan C L,Cao X H,Wu X J,et al.Recent Advances in Ultrathin Two-Dimensional Nanomaterials[J]. Chem Rev,2017,117(9):6225-6331. | [5] | Zhu Y,Murali S,Stoller M D,et al.Carbon-based Supercapacitors Produced by Activation of Graphene[J]. Science,2011,332(6037):1537-1541. | [6] | Zhu C,Liu T,Qian F,et al.Supercapacitors Based on Three-Dimensional Hierarchical Graphene Aerogels with Periodic Macropores[J]. Nano Lett,2016,16(6):3448-3456. | [7] | Lei Z B,Zhang J T,Zhang L L,et al.Functionalization of Chemically Derived Graphene for Improving Its Electrocapacitive Energy Storage Properties[J]. Energy Environ Sci,2016,9(6):1891-1930. | [8] | Rao C N R,Gopalakrishnan K,Govindaraj A. Synthesis, Properties and Applications of Graphene Doped with Boron, Nitrogen and Other Elements[J]. Nano Today,2014,9(3):324-343. | [9] | Li M,Tang Z,Leng M,et al.Flexible Solid-State Supercapacitor Based on Graphene-based Hybrid Films[J]. Adv Funct Mater,2014,24(47):7495-7502. | [10] | Lehtimaki S,Suominen M,Damlin P,et al.Preparation of Supercapacitors on Flexible Substrates with Electrodeposited PEDOT/Graphene Composites[J]. ACS Appl Mater Interfaces,2015,7(40):22137-22147. | [11] | Fan Z,Yan J,Zhi L,et al.A Three-Dimensional Carbon Nanotube/Graphene Sandwich and Its Application as Electrode in Supercapacitors[J]. Adv Mater,2010,22(33):3723-3728. | [12] | Xu Y,Lin Z,Huang X,et al.Functionalized Graphene Hydrogel-based High-Performance Supercapacitors[J]. Adv Mater,2013,25(40):5779-5784. | [13] | Gao L,Gan S,Li H,et al.Self-Assembling Graphene-anthraquinone-2-sulphonate Supramolecular Nanostructures with Enhanced Energy Density for Supercapacitors[J]. Nanotechnology,2017,28(27):275602. | [14] | Lu X,Li L,Song B,et al.Mechanistic Investigation of the Graphene Functionalization Using p-Phenylenediamine and Its Application for Supercapacitors[J]. Nano Energy,2015,17:160-170. | [15] | Jana M,Saha S,Khanra P,et al.Non-covalent Functionalization of Reduced Graphene Oxide Using Sulfanilic Acid Azocromotrop and Its Application as a Supercapacitor Electrode Material[J]. J Mater Chem A,2015,3(14):7323-7331. | [16] | Liu J,Zhang L,Wu H B,et al.High-performance Flexible Asymmetric Supercapacitors Based on a New Graphene Foam/Carbon Nanotube Hybrid Film[J]. Energy Environ Sci,2014,7(11):3709-3719. | [17] | Tang Z,Tang C,Gong H.A High Energy Density Asymmetric Supercapacitor from Nano-architectured Ni(OH)2/Carbon Nanotube Electrodes[J]. Adv Funct Mater,2012,22(6):1272-1278 | [18] | Song Z,Fan Y,Sun Z,et al.A New Strategy for Integrating Superior Mechanical Performance and High Volumetric Energy Density into a Janus Graphene Film for Wearable Solid-State Supercapacitors[J]. J Mater Chem A,2017,5(39):20797-20807. | [19] | Zhang G,Liu H,Qu J,et al.Two-dimensional Layered MoS2:Rational Design, Properties and Electrochemical Applications[J]. Energy Environ Sci,2016,9(4):1190-1209. | [20] | Feng J,Sun X,Wu C,et al.Metallic Few-layered VS2 Ultrathin Nanosheets:High Two-dimensional Conductivity for In-plane Supercapacitors[J]. J Am Chem Soc,2011,133(44):17832-17838. | [21] | Ratha S,Rout C S.Supercapacitor Electrodes Based on Layered Tungsten Disulfide-Reduced Graphene Oxide Hybrids Synthesized by a Facile Hydrothermal Method[J]. ACS Appl Mater Interfaces,2013,5(21):11427-11433. | [22] | Peng L,Peng X,Liu B,et al.Ultrathin Two-dimensional MnO2/Graphene Hybrid Nanostructures for High-Performance, Flexible Planar Supercapacitors[J]. Nano Lett,2013,13(5):2151-1257. | [23] | Xiang K,Xu Z,Qu T,et al.Two Dimensional Oxygen-Vacancy-rich Co3O4 Nanosheets with Excellent Supercapacitor Performances[J]. Chem Commun(Camb),2017,53(92):12410-12413. | [24] | Song D,Zhu J,Li J,et al.Free-standing Two-dimensional Mesoporous ZnCo2O4 Thin Sheets Consisting of 3D Ultrathin Nanoflake Array Frameworks for High Performance Asymmetric Supercapacitor[J]. Electrochim Acta,2017,257:455-464. | [25] | Cao H,Wu N,Liu Y,et al.Facile Synthesis of Rod-like Manganese Molybdate Crystallines with Two-dimentional Nanoflakes for Supercapacitor Application[J]. Electrochim Acta,2017,225:605-613. | [26] | Chen H,Hu L,Chen M,et al.Nickel-Cobalt Layered Double Hydroxide Nanosheets for High-performance Supercapacitor Electrode Materials[J]. Adv Funct Mater,2014,24(7):934-942. | [27] | Xie J,Sun X,Zhang N,et al.Layer-by-layer β-Ni(OH)2/Graphene Nanohybrids for Ultraflexible All-solid-State Thin-Film Supercapacitors with High Electrochemical Performance[J]. Nano Energy,2013,2(1):65-74. | [28] | Dong X,Wang L,Wang D,et al.Layer-by-Layer Engineered Co-Al Hydroxide Nanosheets/Graphene Multilayer Films as Flexible Electrode for Supercapacitor[J]. Langmuir,2012,28(1):293-298. | [29] | Gao Z,Wang J,Li Z,et al.Graphene Nanosheet/Ni2+/Al3+ Layered Double-Hydroxide Composite as a Novel Electrode for a Supercapacitor[J]. Chem Mater,2011,23(15):3509-3516. | [30] | Xiong G,He P,Liu L,et al.Plasma-Grown Graphene Petals Templating Ni-Co-Mn Hydroxide Nanoneedles for High-Rate and Long-Cycle-Life Pseudocapacitive Electrodes[J]. J Mater Chem A,2015,3(45):22940-22948. | [31] | Choi D,Blomgren G E,Kumta P N.Fast and Reversible Surface Redox Reaction in Nanocrystalline Vanadium Nitride Supercapacitors[J]. Adv Mater,2006,18(9):1178-1182. | [32] | Krishnamoorthy K,Pazhamalai P,Sahoo S,et al.Titanium Carbide Sheet Based High Performance Wire Type Solid State Supercapacitors[J]. J Mater Chem A,2017,5(12):5726-5736. | [33] | Ghidiu M,Lukatskaya M R,Zhao M Q,et al.Conductive Two-Dimensional Titanium Carbide ‘Clay’ with High Volumetric Capacitance[J]. Nature,2014,516(7529):78-81. | [34] | Ling Z,Ren C E,Zhao M Q,et al.Flexible and Conductive MXene Films and Nanocomposites with High Capacitance[J]. PNAS,2014,111(47):16676-16681. | [35] | Boota M,Anasori B,Voigt C,et al.Pseudocapacitive Electrodes Produced by Oxidant-Free Polymerization of Pyrrole Between the Layers of 2D Titanium Carbide(MXene)[J]. Adv Mater,2016,28(7):1517-1522. | [36] | Li H,Hou Y,Wang F,et al.Flexible All-Solid-State Supercapacitors with High Volumetric Capacitances Boosted by Solution Processable MXene and Electrochemically Exfoliated Graphene[J]. Adv Energy Mater,2017,7(4):1601847-1601853. | [37] | Yan P,Zhang R,Jia J,et al.Enhanced Supercapacitive Performance of Delaminated Two-dimensional Titanium Carbide/Carbon Nanotube Composites in Alkaline Electrolyte[J]. J Power Sources,2015,284:38-43. | [38] | Lukatskaya M R,Kota S,Lin Z,et al.Ultra-high-rate Pseudocapacitive Energy Storage in Two-dimensional Transition Metal Carbides[J]. Nat Energy,2017,2(8):17105. | [39] | Krishnamoorthy K,Thangavel S,Chelora Veetil J,et al.Graphdiyne Nanostructures as a New Electrode Material for Electrochemical Supercapacitors[J]. Int J Hydrogen Energy,2016,41(3):1672-1678. | [40] | Tahir M,Cao C,Butt F K,et al.Tubular Graphitic-C3N4:A Prospective Material for Energy Storage and Green Photocatalysis[J]. J Mater Chem A,2013,1(44):13949. | [41] | Wu C,Lu X,Peng L,et al.Two-dimensional Vanadyl Phosphate Ultrathin Nanosheets for High Energy Density and Flexible Pseudocapacitors[J]. Nat Commun,2013,4:2431. | [42] | Wang L,Han Y,Feng X,et al.Metal-Organic Frameworks for Energy Storage:Batteries and Supercapacitors[J]. Coordin Chem Rev,2016,307:361-381. | [43] | Bonaccorso F,Colombo L,Yu G,et al.Graphene, Related Two-Dimensional Crystals, and Hybrid Systems for Energy Conversion and Storage[J]. Science,2015,347(6217):1246501. | [44] | Ren W,Li D J,Liu H.Carbon Nanomaterials with Different Dimensions for Anode of Li-Ion Batteries[J]. Key Eng Mater,2012,519:118-123. | [45] | Jiao L S,Liu J Y,Li H Y,et al.Facile Synthesis of Reduced Graphene Oxide-Porous Silicon Composite as Superior Anode Material for Lithium-Ion Battery Anodes[J]. J Power Sources,2016,315:9-15. | [46] | Jiao L,Sun Z,Li H,et al.Collector and Binder-free High Quality Graphene Film as a High Performance Anode for Lithium-Ion Batteries[J]. RSC Adv,2017,7(4):1818-1821. | [47] | Peng L,Xiong P,Ma L,et al.Holey Two-dimensional Transition Metal Oxide Nanosheets for Efficient Energy Storage[J]. Nat Commun,2017,8:15139. | [48] | Chang K,Chen W X,Li H,et al.Microwave-assisted Synthesis of SnS2/SnO2 Composites by l-Cysteine and Their Electrochemical Performances when Used as Anode Materials of Li-Ion Batteries[J]. Electrochim Acta,2011,56(7):2856-2861. | [49] | Seo J W,Jang J T,Park S W,et al.Two-Dimensional SnS2 Nanoplates with Extraordinary High Discharge Capacity for Lithium Ion Batteries[J]. Adv Mater,2008,20(22):4269-4273. | [50] | Chang K,Chen W.L-Cysteine-assisted Synthesis of Layered MoS2/Graphene Composites with Excellent Electrochemical Performances for Lithium Ion Batteries[J]. ACS Nano,2011,5(6):4720-4728. | [51] | Jing Y,Zhou Z,Cabrera C R,et al.Metallic VS2 Monolayer:A Promising 2D Anode Material for Lithium Ion Batteries[J]. J Phys Chem C,2013,117(48):25409-25413. | [52] | Bhandavat R,David L,Singh G.Synthesis of Surface-Functionalized WS2 Nanosheets and Performance as Li-Ion Battery Anodes[J]. J Phys Chem Lett,2012,3(11):1523-1530. | [53] | Deng S,Wang L,Hou T,et al.Two-Dimensional MnO2 as a Better Cathode Material for Lithium Ion Batteries[J]. J Phys Chem C,2015,119(52):28783-28788. | [54] | Li N,Zhou G,Fang R,et al.TiO2/Graphene Sandwich Paper as an Anisotropic Electrode for High Rate Lithium Ion Batteries[J]. Nanoscale,2013,5(17):7780-7784. | [55] | Liu Y,Wang W,Gu L,et al.Flexible CuO Nanosheets/Reduced-Graphene Oxide Composite Paper:Binder-free Anode for High-Performance Lithium-Ion Batteries[J]. ACS Appl Mater Interfaces,2013,5(19):9850-9855. | [56] | Yu S H,Lee S H,Lee D J,et al.Conversion Reaction-Based Oxide Nanomaterials for Lithium Ion Battery Anodes[J]. Small,2016,12(16):2146-2172. | [57] | Hu Y Y,Liu Z,Nam K W,et al.Origin of Additional Capacities in Metal Oxide Lithium-Ion Battery Electrodes[J]. Nat Mater,2013,12(12):1130-1136. | [58] | Sun D,Wang M,Li Z,et al.Two-dimensional Ti3C2 as Anode Material for Li-Ion Batteries[J]. Electrochem Commun,2014,47:80-83. | [59] | Naguib M,Come J,Dyatkin B,et al.MXene:A Promising Transition Metal Carbide Anode for Lithium-Ion Batteries[J]. Electrochem Commun,2012,16(1):61-64. | [60] | Naguib M,Halim J,Lu J,et al.New Two-dimensional Niobium and Vanadium Carbides as Promising Materials for Li-ion Batteries[J]. J Am Chem Soc,2013,135(43):15966-15969. | [61] | Liu Y,Wang W,Ying Y,et al.Binder-free layered Ti3C2/CNTs Nanocomposite Anodes with Enhanced Capacity and Long-Cycle Life for Lithium-Ion Batteries[J]. Dalton Trans,2015,44(16):7123-7126. | [62] | Luo J,Tao X,Zhang J,et al.Sn(4)(+) Ion Decorated Highly Conductive Ti3C2 MXene:Promising Lithium-Ion Anodes with Enhanced Volumetric Capacity and Cyclic Performance[J]. ACS Nano,2016,10(2):2491-2499. | [63] | Park C M,Sohn H J.Black Phosphorus and Its Composite for Lithium Rechargeable Batteries[J]. Adv Mater,2007,19(18):2465-2468. | [64] | Chowdhury C,Karmakar S,Datta A.Capping Black Phosphorene by h-BN Enhances Performances in Anodes for Li and Na Ion Batteries[J]. ACS Energy Lett,2016,1(1):253-259. | [65] | Wang S,Wang Q,Shao P,et al.Exfoliation of Covalent Organic Frameworks into Few-Layer Redox-Active Nanosheets as Cathode Materials for Lithium-Ion Batteries[J]. J Am Chem Soc,2017,139(12):4258-4261. | [66] | Karmakar S,Chowdhury C,Datta A.Two-Dimensional Group IV Monochalcogenides:Anode Materials for Li-Ion Batteries[J]. J Phys Chem C,2016,120(27):14522-14530. | [67] | Zhang N,Ma W,Wu T,et al.Edge-rich MoS2 Naonosheets Rooting into Polyaniline Nanofibers as Effective Catalyst for Electrochemical Hydrogen Evolution[J]. Electrochim Acta,2015,180:155-163. | [68] | Zhang N,Gan S,Wu T,et al.Growth Control of MoS2 Nanosheets on Carbon Cloth for Maximum Active Edges Exposed:An Excellent Hydrogen Evolution 3D Cathode[J]. ACS Appl Mater Interfaces,2015,7(22):12193-12202. | [69] | Zhang N,Ma W,Jia F,et al.Controlled Electrodeposition of CoMoSx on Carbon Cloth:A 3D Cathode for Highly-Efficient Electrocatalytic Hydrogen Evolution[J]. Int J Hydrogen Energ,2016,41(6):3811-3819. | [70] | Xie J,Zhang H,Li S,et al.Defect-rich MoS2 Ultrathin Nanosheets with Additional Active Edge Sites for Enhanced Electrocatalytic Hydrogen Evolution[J]. Adv Mater,2013,25(40):5807-5813. | [71] | Seh Z W,Fredrickson K D,Anasori B,et al.Two-Dimensional Molybdenum Carbide(MXene) as an Efficient Electrocatalyst for Hydrogen Evolution[J]. ACS Energy Lett,2016,1(3):589-594. | [72] | Huynh M,Shi C,Billinge S J,et al.Nature of Activated Manganese Oxide for Oxygen Evolution[J]. J Am Chem Soc,2015,137(47):14887-14904. | [73] | McCrory C C,Jung S,Ferrer I M,et al. Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices[J]. J Am Chem Soc,2015,137(13):4347-4357. | [74] | Burke M S,Enman L J,Batchellor A S,et al.Oxygen Evolution Reaction Electrocatalysis on Transition Metal Oxides and (Oxy)hydroxides:Activity Trends and Design Principles[J]. Chem Mater,2015,27(22):7549-7558. | [75] | Candelaria S L,Bedford N M,Woeh T J l,et al. Multi-Component Fe!Ni Hydroxide Nanocatalyst for Oxygen Evolution and Methanol Oxidation Reactions Under Alkaline Conditions[J]. ACS Catal,2016,7(1):365-379. | [76] | Dutta S,Indra A,Feng Y,et al.Self-Supported Nickel Iron Layered Double Hydroxide-Nickel Selenide Electrocatalyst for Superior Water Splitting Activity[J]. ACS Appl Mater Interfaces,2017,9(39):33766-33774. | [77] | Wang Z,Li J,Tian X,et al.Porous Nickel-Iron Selenide Nanosheets as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction[J]. ACS Appl Mater Interfaces,2016,8(30):19386-19392. | [78] | Lu Z,Qian L,Tian Y,et al.Ternary NiFeMn Layered Double Hydroxides as Highly-Efficient Oxygen Evolution Catalysts[J]. Chem Commun,2016,52(5):908-911. | [79] | Hou Y,Lohe M R,Zhang J,et al.Vertically Oriented Cobalt Selenide/NiFe Layered-double-hydroxide Nanosheets Supported on Exfoliated Graphene Foil:An Efficient 3D Electrode for Overall Water Splitting[J]. Energy Environ Sci,2016,9(2):478-483. | [80] | Xu K,Chen P,Li X,et al.Metallic Nickel Nitride Nanosheets Realizing Enhanced Electrochemical Water Oxidation[J]. J Am Chem Soc,2015,137(12):4119-4125. | [81] | Zhang W,Zhou K.Ultrathin Two-Dimensional Nanostructured Materials for Highly Efficient Water Oxidation[J]. Small,2017,13(32). | [82] | Zou X,Huang X,Goswami A,et al.Cobalt-embedded Nitrogen-rich Carbon Nanotubes Efficiently Catalyze Hydrogen Evolution Rreaction at All pH Values[J]. Angew Chem Int Ed Engl,2014,53(17):4372-4376. | [83] | Ma W,Han D,Zhou M,et al.Ultrathin g-C3N4/TiO2 Composites as Photoelectrochemical Elements for the Real-Time Evaluation of Global Antioxidant Capacity[J]. Chem Sci,2014,5(10):3946-3951. | [84] | Ma W,Wang L,Zhang N,et al.Biomolecule-free, Selective Detection of o-Diphenol and Its Derivatives with WS2/TiO2-based Photoelectrochemical Platform[J]. Anal Chem,2015,87(9):4844-4850. | [85] | Wang L,Ma W,Gan S,et al.Engineered Photoelectrochemical Platform for Rational Global Antioxidant Capacity Evaluation Based on Ultrasensitive Sulfonated Graphene-TiO2 Nanohybrid[J]. Anal Chem,2014,86(20):10171-10178. | [86] | Huang K J,Wang L,Li J,et al.Electrochemical Sensing Based on Layered MoS2 Graphene Composites[J]. Sensors Actuat B-Chem,2013,178:671-677. | [87] | Bakker E,Telting-Diaz M.Electrochemical Sensors[J]. Anal Chem,2002,74(12):2781-2800. | [88] | Zhu C,Yang G,Li H,et al.Electrochemical Sensors and Biosensors Based on Nanomaterials and Nanostructures[J]. Anal Chem,2015,87(1):230-249. | [89] | Chen H,M ller M B,Gilmore K J,et al. Mechanically Strong, Electrically Conductive, and Biocompatible Graphene Paper[J]. Adv Mater,2008,20(18):3557-3561. | [90] | Jiang Y,Zhang Q,Li F,et al.Glucose Oxidase and Graphene Bionanocomposite Bridged by Ionic Liquid Unit for Glucose Biosensing Application[J]. Sens Actuators B,2012,161(1):728-733. | [91] | Ma W,Lv X,Han D,et al.Decoration of Electro-reduced Graphene Oxide with Uniform Gold Nanoparticles Based on in situ Diazonium Chemistry and Their Application in Methanol Oxidation[J]. J Electroanal Chem,2013,690:111-116. | [92] | Zhang W,Li F,Hu Y,et al.Perylene Derivative-Bridged Au Graphene Nanohybrid for Label-Free HpDNA Biosensor[J]. J Mater Chem B,2014,2(20):3142-3148. | [93] | Zhong L,Gan S,Fu X,et al.Electrochemically Controlled Growth of Silver Nanocrystals on Graphene Thin Film and Applications for Efficient Nonenzymatic H2O2 Biosensor[J]. Electrochim Acta,2013,89:222-228. | [94] | Wang Y H,Huang K J,Wu X.Recent Advances in Transition-Metal Dichalcogenides Based Electrochemical Biosensors:A Review[J]. Biosens Bioelectron,2017,97:305-316. | [95] | Wu S,Zeng Z,He Q,et al.Electrochemically Reduced Single-Layer MoS(2) Nanosheets:Characterization, Properties, and Sensing Applications[J]. Small,2012,8(14):2264-2270. |
|