[1] Borska S,Chmielewska M,Wysocka T,et al. In Vitro Effect of Quercetin on Human Gastric Carcinoma:Targeting Cancer Cells Death and MDR[J]. Food Chem Toxicol,2012,50(9):3375-3383. [2] Rogerio A P,Dora C L,Andrade E L,et al. Anti-inflammatory Effect of Quercetin-loaded Microemulsion in the Airways Allergic Inflammatory Model in Mice[J]. Pharmacol Res,2010,61(4):288-397. [3] Ferrer E G,Salinas M V,Correa M J,et al. Synthesis, Characterization, Antitumoral and Osteogenic Activities of Quercetin Vanadyl(IV) Complexes[J]. J Biol Inorg Chem,2006,11(6):791-801. [4] Kim Y H,Lee D H,Jeong J H,et al. Quercetin Augments TRAIL-Induced Apoptotic Death: Involvement of the ERK Signal Transduction Pathway[J]. Biochem Pharmacol,2008,75(10):1946-1958. [5] Gil J J,Langner E,Wertel I,et al. Temozolomide, Quercetin and Cell Death in the MOGGCCM Astrocytoma Cell Line[J]. Chem Biol Interact,2010,188(1):190-203. [6] Pejic N,Kuntic V,Vujic Z,et al. Direct Spectrophotometric Determination of Quercetin in the Presence of Ascorbic Acid[J]. Il Farmaco,2004,59(1):21-24. [7] Nugroho A,Lim S C,Lee C M,et al. Simultaneous Quantitative Determination and Validation of Quercetin Glycosides with Peroxynitrite-Scavenging Effects from Saussurea grandifolia[J]. J Pharm Biomed Anal,2001,61(5):247-251. [8] Yu J B,Jin H,Gui R J,et al. A Facile Strategy for Ratiometric Electrochemical Sensing of Quercetin in Electrolyte Solution Directly Using Bare Glassy Carbon Electrode[J]. J Electroanal Chem,2017,795:97-102. [9] Wu D D,Chen Z. ZnS Quantum Dots-Based Fluorescence Spectroscopic Technique for the Detection of Quercetin[J]. Luminescence,2014,29(4):307-313. [10] Dwiecki K,Kwiatkowska P,Siger A,et al. Determination of Quercetin in Onion (Allium cepa) Using β-Cyclodextrin-Coated CdSe/ZnS Quantum Dot-Based Fluorescence Spectroscopic Technique[J]. Int J Food Sci Tech,2015,50(6):1366-1373. [11] Gao Y F,Jin X,Kong F Y,et al. One-pot Green and Simple Synthesis of Actinian Nickel-Doped Carbon Nanoflowers for Ultrasensitive Sensing of Quercetin[J]. Analyst,2019,144(24):7283-7289. [12] Aparna R S,Devi J S A,Anjana R R,et al. Reversible Fluorescence Modulation of BSA Stabilised Copper Nanoclusters for the Selective Detection of Protamine and Heparin[J]. Analyst,2019,144(5):1799-1808. [13] Aparna R S,Syamchand S S,George S. Tannic Acid Stabilised Copper Nanocluster Developed Through Microwave Mediated Synthesis as a Fluorescent Probe for the Turn On Detection of Dopamine[J]. J Clust Sci,2017,28(4):2223-2238. [14] Bhamore J R,Jha S,Mungara A K,et al. One-step Green Synthetic Approach for the Preparation of Multicolor Emittingcopper Nanoclusters and Their Applications in Chemical Species Sensing and Bioimaging[J]. Biosens Bioelectron,2016,80:243-248. [15] Ai L,Jiang W R,Liu Z Y,et al. Engineering a Red Emission of Copper Nanocluster Self-assembly Architectures by Employing Aromatic Thiols as Capping Ligands[J]. Nanoscale,2017,9:12618-12627. [16] Basu K,Gayen K,Mitra T,et al. Different Color Emissive Copper Nanoclusters and Cancer Cell Imaging[J]. ChemNanoMat,2017,3:808-814. [17] Bagheri H,Afkhami A,Khoshsafar H,et al. Protein Capped Cu Nanoclusters-SWCNT Nanocomposite as a Novel Candidate of High Performance Platform for Organophosphates Enzymeless Biosensor[J]. Biosens Bioelectron,2017,89:829-836. [18] Baig M M F,Chen C T,Chen Y C. Photoluminescence Determination of Aluminum Using Glutathione-Capped Gold Nanoclusters[J]. Anal Lett,2016,49(14):2246-2258. [19] Chen P C,Ma J Y,Chen L Y,et al. Photoluminescent AuCu Bimetallic Nanoclusters as pH Sensors and Catalysts[J]. Nanoscale,2014,6(7):3503-3507. [20] Lu D T,Chen Z,Li Y F,et al. Determination of Mercury(II) by Fluorescence Using Deoxyribonucleic Acid Stabilized Silver Nanoclusters[J]. Anal Lett,2014,48(2):281-290. |