Chinese Journal of Applied Chemistry ›› 2023, Vol. 40 ›› Issue (4): 509-517.DOI: 10.19894/j.issn.1000-0518.220340
• Full Papers • Previous Articles Next Articles
Yue-Xia ZHANG, Xiao-Peng FAN, Yu-Juan CAO, Xin-Tong YANG, Zhong-Ping LI, Zhen-Hua YANG(), Chuan DONG
Received:
2022-10-19
Accepted:
2023-02-20
Published:
2023-04-01
Online:
2023-04-17
Contact:
Zhen-Hua YANG
About author:
yzh429@sxu.edu.cnSupported by:
CLC Number:
Yue-Xia ZHANG, Xiao-Peng FAN, Yu-Juan CAO, Xin-Tong YANG, Zhong-Ping LI, Zhen-Hua YANG, Chuan DONG. Synthesis of Oil-soluble Carbon Quantum Dots by Pyrolysis Method for the Detection of Oxytetracycline[J]. Chinese Journal of Applied Chemistry, 2023, 40(4): 509-517.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.220340
Fig.2 Optimization of synthesis conditions of o-CDsNote: A. GSH amount; B. oleylamine dosage; C. reaction temperature;D. reaction time of GSH and CA; E. reaction time of oleylamine on the fluorescence intensity of o-CDs
Fig.6 (A) UV-Vis, excitation wavelengths and emission wavelength spectra of o-CDs; (B) Fluorescence emissionspectra of o-CDs with different excitation wavelengths
Fig.7 (A) The effect of different antibiotics on fluorescence intensity of o-CDs; (B) The influence of pH on fluorescence intensity of o-CDs sensors; (C) The effect of reaction time of OTC on fluorescence intensity of o-CDs
Fig.8 (A) Fluorescence spectra of o-CDs sensor for the detection of OTC; (B) The plot of theratios of (F0-F)/F0 versus the concentration of OTC; (C) Fitting diagram of fluorescence lifetime of o-CDs sensor
Samples | Added/(μg·mL-1) | Found/(μg·mL-1) | Recovery/% | RSD/% |
---|---|---|---|---|
1 | 3.83 | 3.99 | 104.18 | 3.74 |
2 | 7.67 | 7.45 | 97.13 | 2.51 |
3 | 11.50 | 11.22 | 97.57 | 2.83 |
Table 1 Determination of OTC in milk by standard addition recovery method
Samples | Added/(μg·mL-1) | Found/(μg·mL-1) | Recovery/% | RSD/% |
---|---|---|---|---|
1 | 3.83 | 3.99 | 104.18 | 3.74 |
2 | 7.67 | 7.45 | 97.13 | 2.51 |
3 | 11.50 | 11.22 | 97.57 | 2.83 |
Method | Linear range | LOD | Ref. |
---|---|---|---|
HPLC | 0.32~1000 μg/mL | 6.07 μg/mL | [ |
SERS | 0.2~22 μg/mL | 0.2 μg/mL | [ |
SPE and AuNPs coated capillary electrophoresis | 10~200 μg/mL | 0.22 μg/mL | [ |
Electrochemical sensor, Biosensor | 0.46~46.04 μg/mL | 0.15 μg/mL | [ |
Up conversion luminescent nanomaterials | 0.05~100 ng/mL | 0.04 ng/mL | [ |
1~10 μg/mL | 0.16 μg/mL | [ | |
Fluorescence sensor | 0.77~16.12 μg/mL | 0.14 μg/mL | This work |
Table 2 Comparison of different methods for the detection of OTC
Method | Linear range | LOD | Ref. |
---|---|---|---|
HPLC | 0.32~1000 μg/mL | 6.07 μg/mL | [ |
SERS | 0.2~22 μg/mL | 0.2 μg/mL | [ |
SPE and AuNPs coated capillary electrophoresis | 10~200 μg/mL | 0.22 μg/mL | [ |
Electrochemical sensor, Biosensor | 0.46~46.04 μg/mL | 0.15 μg/mL | [ |
Up conversion luminescent nanomaterials | 0.05~100 ng/mL | 0.04 ng/mL | [ |
1~10 μg/mL | 0.16 μg/mL | [ | |
Fluorescence sensor | 0.77~16.12 μg/mL | 0.14 μg/mL | This work |
1 | HE Y P, TIAN Z, YI Q Z, et al. Impact of oxytetracycline on anaerobic wastewater treatment and mitigation using enhanced hydrolysis pretreatment[J]. Water Res, 2020, 187: 116408. |
2 | BEN Y J, FU C X, HU M, et al. Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: a review[J]. Environ Res, 2019, 169: 483-493. |
3 | LI X Y, GAN T, ZHANG J E, et al. High-capacity removal of oxytetracycline hydrochloride from wastewater via Mikania micrantha Kunth-derived biochar modified by Zn/Fe-layered double hydroxide[J]. Bioresour Technol, 2022, 361: 127646. |
4 | 王慧, 高原, 韩双. 石墨烯-聚乙烯亚胺分子印迹电化学传感器检测土霉素[J]. 沈阳化工大学学报, 2021, 35(2): 107-113. |
WANG H, GAO Y, HAN S. Molecularly imprinted electrochemical sensor for determination of oxytetracycline based on reduced graphene oxide-polyethyleneimine complex[J]. J Shenyang Univ Chem Technol, 2021, 35(2): 107-113. | |
5 | GONZALEZ F, FALCON G, GANDARA S. Quantitative analysis for oxytetracycline in medicated premixes and feeds by second-derivative synchronous spectrofluorimetry[J]. Anal Chim Acta, 2002(455): 143-148. |
6 | 孙春燕, 司金雨, 杜彩溢, 等. 基于核酸外切酶Ⅰ辅助目标物循环放大策略的非标记适配体荧光传感器检测土霉素[J]. 分析化学, 2021, 49(9): 1488-1496. |
SUN C Y, SI J Y, DU C Y, et al. Label-free fluorescent aptasensor based on exonuclease-assisted target recycling strategy for sensitive detection of oxytetracycline[J]. Chin J Anal Chem, 2021, 49(9): 1488-1496. | |
7 | XU H, MI H Y, GUAN M M, et al. Residue analysis of tetracyclines in milk by HPLC coupled with hollow fiber membranes-based dynamic liquid-liquid micro-extraction[J]. Food Chem, 2017, 232: 198-202. |
8 | 王美丽, 李敦毅. QuEChERS法提取-液相色谱-质谱法检测分析制药园区污水中青霉素、洁霉素、土霉素、四环素和庆大霉素残留方法的建立[J]. 分析仪器, 2021(4): 150-154. |
WANG M L, LI D Y. Establishment of QuEChERS extraction-HPLC/MS method for determination of antibiotics in sewage of pharmaceutical industrial park[J]. Anal Instrum, 2021(4): 150-154. | |
9 | 曹金博, 胡骁飞, 王耀, 等. 土霉素完全抗原的制备及ELISA检测方法的建立[J]. 食品与机械, 2019, 35(9): 77-83. |
CAO J B, HU X F, WANG Y, et al. Preparation of OTC complete antigen and establishment of ELISA detection method[J]. Food Mach, 2019, 35(9): 77-83. | |
10 | 杨雁玲. 荧光光谱法直接测定饲料中的土霉素[J]. 洛阳师范学院学报, 2004(5): 53-55. |
YKNG Y L. Direct measurement of OTC in forage with fluorometric spectroscopic analysis[J]. J Luoyang Norm Univ, 2004(5): 53-55. | |
11 | HU X L, GUO Y, ZHANG J N, et al. A signal-amplified ratiometric fluorescence biomimetic sensor based on the synergistic effect of IFE and AE for the visual smart monitoring of oxytetracycline[J]. Chem Eng J, 2022, 433(1): 134499. |
12 | WU Y M, ZHENG S N, YE Y Y, et al. Crown-ether-bridging bis-diphenylacrylonitrile macrocycle: the effective fluorescence sensor for oxytetracycline[J]. J Photochem Photobiol A, 2021, 412: 113219. |
13 | LI L, WU G, YANG G, et al. Focusing on luminescent graphene quantum dots: current status and future perspectives[J]. Nanoscale, 2013, 5(10): 4015-4039. |
14 | ZHOU X, GAO X, SONG F, et al. A sensing approach for dopa mine determination by boronic acid-functionalized molecularly imprinted graphene quantum dots composite[J]. Appl Surf Sci, 2017, 423(30): 810-816. |
15 | PEDRERO M, CAMPUZANO S, PINGARRON J M. Electrochemical (bio)sensing of clinical markers using quantum dots[J]. Electroanalysis, 2016, 29(1): 24-37. |
16 | WANG Y, LI X, SONG J, et al. All-inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics[J]. Adv Mater, 2015, 47(5): 7101-7108. |
17 | HARDMAN R. A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors[J]. Environ Health Perspect, 2006, 114(2): 165-172. |
18 | 杨振华, 孙宣森, 张月霞, 等. 氮硫共掺杂碳点的制备及其对牛奶中土霉素的检测[J]. 应用化学, 2022, 39(9): 1382-1390. |
YANG Z H, SUN X S, ZHANG Y X, et al. Preparation of nitrogen sulfur co-doped carbon dots with nitrogen sulfur and the application for detection of oxytetracycline in milk[J]. Chin J Appl Chem, 2022, 39(9): 1382-1390. | |
19 | FAN J, QI L, LI Y P, et al. A single probe-based sensor array for fingerprinting biothiols in serum and urine via surfactant modulation strategy[J]. Sens Actuators B: Chem, 2019, 301: 127144. |
20 | ZHANG Q, WANG L X, SU P C, et al. Highly selective and sensitive determination of ceftriaxone sodium using nitrogen-rich carbon dots based on ratiometric fluorescence[J]. Talanta, 2023, 255: 124205. |
21 | 尚金梁, 卫迎迎, 王军丽, 等. 三苯甲基改性油溶性碳量子点合成及其在发光器件中的应用[J]. 发光学报, 2021, 42(8): 1257-1266. |
SHANG J L, WEI Y Y, WANG J L, et al. Synthesis of triphenylmethyl modified oil-soluble carbon quantum dots and their application in light-emitting devices[J]. Chin J Lumin, 2021, 42(8): 1257-1266. | |
22 | WU Z L, GAO M X, WANG T T, et al. A general quantitative pH sensor developed with dicyandiamide N-doped high quantum yield graphene quantum dots[J]. Nanoscale, 2014, 6: 3868-3874. |
23 | SEYEDI S, PARVIN P, JAFARGHOLI A, et al. Fluorescence emission quenching of RdB fluorophores in attendance of various blood type RBCs based on Stern-Volmer formalism[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2021, 248: 119237. |
24 | WANG Q, GAO Y X, WANG B Y, et al. S,N-Codoped oil-soluble fluorescent carbon dots for a high color-rendering WLED[J]. J Mater Chem C, 2020, 8(13): 4343-4349. |
25 | TAN J, ZHANG J, LI W, et al. Synthesis of amphiphilic carbon quantum dots with phosphorescence properties and their multifunctional applications[J]. J Mater Chem C, 2016, 4: 10146-10153. |
26 | 霍然, 李再兴, 钟为章, 等. 菌渣中土霉素残留的高效液相检测法[J]. 煤炭与化工, 2019, 42(12): 120-124. |
HUO R, LI Z X, ZHONG W Z, et al. Determination of terramycin in terramycin bacterial residue by high performance liquid chromatography[J]. Coal Chem, 2019, 42(12): 120-124. | |
27 | 郭红青, 刘木华, 袁海超, 等. 表面增强拉曼光谱技术快速检测鸭肉中的土霉素[J]. 食品安全质量检测学报, 2017, 8(1): 169-176. |
GUO H Q, LIU M H, YUAN H C, et al. Rapid detection of oxytetracycline in duck meat by surface-enhanced Raman spectroscopy[J]. J Food Saf Qual, 2017, 8(1): 169-176. | |
28 | 赵凌国, 邵慧凯, 周志峰, 等. SPE及纳米金涂层毛细管电泳检测血浆中土霉素与多西环素[J]. 分析测试学报, 2015, 34(9): 1045-1049. |
ZHAO L G, SHAO H K, ZHOU Z F, et al. Determination of oxytertracycline and doxycycline in plasma by SPE and AuNPs coated capillary electrophoresis[J]. J Instrument Anal, 2015, 34(9): 1045-1049. | |
29 | 方聪聪. 上转换发光纳米材料的制备及其在土霉素检测中的应用[D]. 无锡: 江南大学, 2015. |
FANG C C. Preparation of upconversion luminescent nanomaterials and their application in the detection of Oxytetracycline[D]. Wuxi: Jiangnan University, 2015. | |
30 | 别佳昕. 非标记核酸适配体荧光传感器检测牛奶中的土霉素与三聚氰胺[D]. 长春: 吉林大学, 2018. |
BIE J X. Detection of oxytetracycline and melamine in milk by non labeled aptamer fluorescence sensor[D]. Changchun: Jilin University, 2018. |
[1] | Rui-Zhe WANG, Guang-Qi HU, Wei-Hao YE, Chao-Fan HU, Jian-Le ZHUANG, Bing-Fu LEI, Wei LI, Ying-Liang LIU. Hydrothermal Preparation and Application of Oil-soluble Carbon Dots with High Ultraviolet-short-wave Blue Light Shielding [J]. Chinese Journal of Applied Chemistry, 2023, 40(1): 59-68. |
[2] | Zhen-Hua YANG, Xuan-Sen SUN, Yue-Xia ZHANG, Yu-Juan CAO, Qi-Qi ZHANG, Qiao-Zhi GUO, Xiao-Peng FAN, Zhong-Ping LI, Chuan DONG. Preparation of Nitrogen Sulfur Co⁃doped Carbon Dots with Nitrogen Sulfur and the Application for Detection of Oxytetracycline in Milk [J]. Chinese Journal of Applied Chemistry, 2022, 39(9): 1382-1390. |
[3] | Hai-Yan QI, Chen-Qi ZHANG, Jin-Long LI, Jun LI. Synthesis of Sulfur and Nitrogen Doped Carbon Dots for Cu(Ⅱ) Detection [J]. Chinese Journal of Applied Chemistry, 2022, 39(6): 980-989. |
[4] | DENG Pei-Yuan, YUAN Wei, LI Chang-Kan, CHEN Long-Xin, YANG Ying-Ying. Interaction Between Preservative Benzoic Acid and Human Serum Albumin [J]. Chinese Journal of Applied Chemistry, 2021, 38(8): 1014-1021. |
[5] | HAO Li-Juan, WANG Ting, DONG Guo-Hua, ZHANG Wen-Zhi, BAI Li-Ming, DU Hai-Yao, LANG Kun, LI Xin. Preparation of Green Carbon Quantum Dots from Corn Starch and Hydrogen Ion/Hydroxyl Ion Regulated Fluorescent Switch Performance [J]. Chinese Journal of Applied Chemistry, 2021, 38(2): 202-211. |
[6] | CAI Zhi-Feng, WU Liang-Liang, QI Kai-Fei, DENG Chen-Hua, ZHANG Shen, ZHANG Cai-Feng. Synthesis of Proline-Stabilized Cu Nanoclusters for Detection of Picric Acid [J]. Chinese Journal of Applied Chemistry, 2021, 38(1): 107-115. |
[7] | ZHANG Shen, GUO Yuyu. One-Pot Synthesis of Fluorescent Polyvinyl Pyrrolidone-Stabilized Cu Nanoclusters for the Determination of Quercetin [J]. Chinese Journal of Applied Chemistry, 2020, 37(9): 1069-1075. |
[8] | MENG Yating, JIAO Yuan, ZHANG Yuan, GAO Yifang, LU Wenjing, LIU Yang, DONG Chuan. Synthesis of Red Emission Fluorescent Carbon Dots and Its Application for Detection of Persulfate [J]. Chinese Journal of Applied Chemistry, 2020, 37(6): 719-725. |
[9] | GONG Hui, KANG Yu, ZHANG Rong, REN Guodong, HOU Xiaoyu, ZHANG Min, LI Lihong, LIU Wen, WANG Haojiang, DIAO Haipeng. Preparation of Nitrogen-Doped Carbon Dots for Highly Sensitive Detection of Amoxicillin [J]. Chinese Journal of Applied Chemistry, 2020, 37(2): 227-234. |
[10] | WANG Yu, ZHANG Lijing, WANG Ying, BAI Fengying, XING Yongheng. Synthesis, Structure and Fluorescence Effects of Pyrazole-Pyridine Europium Complex [J]. Chinese Journal of Applied Chemistry, 2018, 35(10): 1256-1263. |
[11] | LI Qina, , TIAN Fenglingb, ZHOU Shangc, FU Linglia, LIU Qua, YANG Jidongd. Resonance Rayleigh Scattering, Frequency Doubling Scattering and Fluorescence Spectra of the Eosin Y-Mebendazole System and Their Analytical Applications [J]. Chinese Journal of Applied Chemistry, 2015, 32(4): 481-488. |
[12] | FU Shenghui1,2, LIU Jian3, LIU Shaopu1*. Fluorescence Quenching Reaction of Ceftriaxone with Acriflavine and Its Analytical Application [J]. Chinese Journal of Applied Chemistry, 2014, 31(07): 865-870. |
[13] | YIN Zhifang*, ZHONG Tongsheng, LIU Rong . An Optical Chemical Sensor for Cobalt Ion Based on Fluorescence Quenching of 5-Tret-Butyl-2-Methoxy Thiacalix[4] Arene [J]. Chinese Journal of Applied Chemistry, 2013, 30(04): 464-468. |
[14] | LI Pingping, YIN Pengfei, GONG Huiping, LIU Zhengqing, WANG Xiaodan, HE Youqiu*. A Study on the interaction between CdTe/CdS Quantum Dots with Mitomycin C and its Analytical Application [J]. Chinese Journal of Applied Chemistry, 2012, 29(06): 705-710. |
[15] | WANG Yaqiong, LIU Shaopu, LIU Zhongfang, HU Xiaoli*. Fluorescence Quenching Reaction of Fenaminosulf with Acriflavine and Their Analytical Applications [J]. Chinese Journal of Applied Chemistry, 2012, 29(04): 440-445. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||