应用化学 ›› 2024, Vol. 41 ›› Issue (12): 1760-1769.DOI: 10.19894/j.issn.1000-0518.240055
张瑞起1, 常宇2, 刘作家2, 李雪松1(), 潘利华2()
收稿日期:
2024-02-22
接受日期:
2024-10-16
出版日期:
2024-12-01
发布日期:
2025-01-02
通讯作者:
李雪松,潘利华
基金资助:
Rui-Qi ZHANG1, Yu CHANG2, Zuo-Jia LIU2, Xue-Song LI1(), Li-Hua PAN2()
Received:
2024-02-22
Accepted:
2024-10-16
Published:
2024-12-01
Online:
2025-01-02
Contact:
Xue-Song LI,Li-Hua PAN
About author:
lihuap@ciac.ac.cn;Supported by:
摘要:
采用自合成的稀土螯合剂4,4′-双(1″,1″,1″,2″,2″,3″,3″-7氟-4″,6″-己二酮-6″-基)氯磺化三联苯(BHHCT)制备乙肝表面抗体标记物,应用侧流免疫层析试纸条和配套的时间分辨荧光检测系统,建立了一种时间分辨荧光免疫分析对乙肝表面抗原(HBsAg)快速检测的方法。 该方法线性范围为0.2~500 ng/mL,检出限为0.16 ng/mL,线性回归决定系数(R2)为0.9996。 批内变异系数小于5%,批间变异系数小于8%,样品回收率94.3%~107.8%。 该方法操作简便快捷,20 min内获得检测结果,具有精准、快速、特异性强和无需专业人员操作等优势,满足了乙肝表面抗原的即时检测的精准、快速要求。
中图分类号:
张瑞起, 常宇, 刘作家, 李雪松, 潘利华. 稀土荧光探针用于快速检测乙肝表面抗原[J]. 应用化学, 2024, 41(12): 1760-1769.
Rui-Qi ZHANG, Yu CHANG, Zuo-Jia LIU, Xue-Song LI, Li-Hua PAN. Rare Earth Fluorescent Probes for Rapid Detection of Hepatitis B Surface Antigen[J]. Chinese Journal of Applied Chemistry, 2024, 41(12): 1760-1769.
图1 (A)免疫层析试纸条的组成及工作原理示意图; (B)实验操作流程和每一步所需时间
Fig.1 (A)Schematic diagram of the composition and working principle of immunochromatographic test strips; (B) The experimental operation process and the time required for each step
图2 不同质量浓度下(A) BHHCT-Eu3+的紫外吸收光谱图和(B) Ab-BHHCT-Eu3+的发射光谱图
Fig.2 (A) UV absorption spectra of BHHCT-Eu3+ and (B) emission spectra of Ab-BHHCT-Eu3+ at different mass concentration
图4 (A)标记反应缓冲液不同pH的优化; (B)缓冲液不同pH的标记比; (C)标记反应时间的优化; (D)不同反应时间的标记比
Fig.4 (A) Optimization of labeling reaction buffers with different pH; (B) Marking ratios for buffers with different pH; (C) Optimization of labeling reaction times; (D) Marking ratios for different reaction times
图5 (A)检测滴加不同体积的HBsAg溶液样品的荧光试纸条图像和(B)相应的FT/FC值
Fig.5 (A) Fluorescent test strips images for detection HBsAg solution samples with different drip volumes and (B) corresponding FT/FC values
图6 (A) TRFILF检测不同质量浓度HBsAg的荧光试纸条图像和(B) FT/FC值; (C) FT/FC值与HBsAg质量浓度的线性拟合曲线
Fig.6 (A) Fluorescent test strips images of TRFILF for detection of different mass concentrations of HBsAg and (B) FT/FC values; (C) Linear fitting curves of FT/FC values to HBsAg to mass concentration of HBsAg
ρ(HBsAg)/(ng·mL-1) | Intra-assay CV/%(n=10) | Inter-assay CV/%(n=3) |
---|---|---|
2.0 | 4.6 | 7.7 |
20.0 | 2.4 | 5.3 |
250.0 | 2.6 | 5.1 |
表1 精确度检测结果
Table 1 Precision measurement results
ρ(HBsAg)/(ng·mL-1) | Intra-assay CV/%(n=10) | Inter-assay CV/%(n=3) |
---|---|---|
2.0 | 4.6 | 7.7 |
20.0 | 2.4 | 5.3 |
250.0 | 2.6 | 5.1 |
Added/(ng·mL-1) | Found/(ng·mL-1) | Recovery/% | CV/%(n=10) |
---|---|---|---|
2 | 2.16 | 108.0 | 3.9 |
20 | 18.86 | 94.3 | 2.2 |
250 | 245.62 | 98.2 | 2.5 |
表2 准确度测定结果
Table 2 Accuracy measurement results
Added/(ng·mL-1) | Found/(ng·mL-1) | Recovery/% | CV/%(n=10) |
---|---|---|---|
2 | 2.16 | 108.0 | 3.9 |
20 | 18.86 | 94.3 | 2.2 |
250 | 245.62 | 98.2 | 2.5 |
Method | Limit of detection/(ng·mL-1) | Detection range/(ng·mL-1) | Ref. |
---|---|---|---|
AuNP | 2 | 5~200 | [ |
ELISA | 1 | 0~40 | [ |
CdS nanowires | 0.5 | 0.02~100 | [ |
Modified europium nanoparticles | 0.25 | 0.01~100 | [ |
Ultramarine blue particles | 0.37 | 1~50 | [ |
Rare earth fluorescent probes | 0.16 | 0.2~500 | This work |
表3 本工作与其他方法检测HBsAg的性能对比
Table 3 Comparison of the performance of this work with other methods for the detection of HBsAg
Method | Limit of detection/(ng·mL-1) | Detection range/(ng·mL-1) | Ref. |
---|---|---|---|
AuNP | 2 | 5~200 | [ |
ELISA | 1 | 0~40 | [ |
CdS nanowires | 0.5 | 0.02~100 | [ |
Modified europium nanoparticles | 0.25 | 0.01~100 | [ |
Ultramarine blue particles | 0.37 | 1~50 | [ |
Rare earth fluorescent probes | 0.16 | 0.2~500 | This work |
1 | COX A L, EI-SAYED M H, KAO J H, et al. Progress towards elimination goals for viral hepatitis[J]. Nat Rev Gastro Hepat, 2020, 17(9): 533-542. |
2 | HOGAN G, WINER B Y, AHODANTIN J, et al. Persistent hepatitis B virus and HIV coinfections in dually humanized mice engrafted with human liver and immune system[J]. J Med Virol, 2023, 95(7): e28930. |
3 | HSU Y C, YEH M L, WONG G L H, et al. Incidences and determinants of functional cure during entecavir or tenofovir disoproxil fumarate for chronic hepatitis B[J]. J Infect Dis, 2021, 224(11): 1890-1899. |
4 | SABNIS R W. Combination therapy of RNA interference and small molecules for treating hepatitis B virus infection[J]. ACS Med Chem Lett, 2021, 12(6): 858-859. |
5 | MAK L Y, HUI R W H, FUNG J, et al. The role of different viral biomarkers on the management of chronic hepatitis B[J]. Clin Mol Hepatol, 2023, 29(2): 263-276. |
6 | MAK L Y, HUI R W H, CHEUNG K S, et al. Advances in determining new treatments for hepatitis B infection by utilizing existing and novel biomarkers[J]. Expert Opin Drug Dis, 2023, 18(4): 401-416. |
7 | TIWARI A K, UPADHYAY A P, ARORA D, et al. Head-to-head comparison of enzyme linked immunosorbent assay (ELISA) and enhanced chemiluminescence immunoassay (ECLIA) for the detection of transfusion transmitted disease (TTD) markers; HIV, HCV and HBV in blood donors, in India[J]. J Virol Methods, 2020, 285: 113962. |
8 | TSAI H W, LEE Y P, YEN C J, et al. The serum hepatitis B virus large surface protein as high-risk recurrence biomarker for Hepatoma after curative surgery[J]. Int J Mol Sci, 2022, 23(10): 5376. |
9 | RAHAMAN S, ISLAM S, SAKIB K M, et al. Comparison of ELISA & ICT methods determining hepatitis B surface in suspected patient attending at bangladesh institute of health science (BIHS) general hospital, Dhaka[J]. Amer J Med Sci Innov, 2023, 2(2): 31-35. |
10 | NIRMALA V F I, ARYATI A, SUSIANTI H, et al. Correlation between quantitative hepatitis B surface antigen and hepatitis B virus deoxyribonucleic acid levels in hepatitis B e antigen-positive and hepatitis B e antigen-negative chronic hepatitis B patients[J]. Turk J Gastroenterol, 2023, 34(4): 378-382. |
11 | KIM J, LEE K T, CHONG M S. A convergence study on the positive rate of hepatitis B surface antibody by age before and after HBV vaccination[J]. J Korea Converg Soc, 2020, 11(1): 77-82. |
12 | PANDEY P, SETYA D, RANJAN S, et al. Correlation between hepatitis B viral load and hepatitis B surface antigen levels in asymptomatic seropositive blood donors[J]. Glob J Transfus Med, 2023, 8(2): 186-189. |
13 | PAPATHEODORIDI M, HADZIYANNIS E, BERBY F, et al. Predictors of hepatitis B surface antigen loss, relapse and retreatment after discontinuation of effective oral antiviral therapy in noncirrhotic HBeAg-negative chronic hepatitis B[J]. J Viral Hepatitis, 2020, 27(2): 118-126. |
14 | VIRTUDAZO M C C, AQUINO J B, ARELLANO R N B, et al. The role of dried blood spot tests in the detection of hepatitis B infection: a systematic review[J]. J Viral Hepatitis, 2024, 31(1): 35-46. |
15 | SHAHID M, SAMI H, SHARMA S, et al. Comparative analysis of electro-chemiluminescence immunoassay (ECLIA), ELISA and rapid diagnostic test (RDT) for detection of hepatitis B surface antigen (HBSAG)[J]. Pathol, 2020, 52: S126-S127. |
16 | OKAWA S, KOMADA K, ICHIMURA Y, et al. Comparison between a rapid diagnostic test and dried blood spot-based immunoassay for hepatitis B surface antigen testing: performance and cost implications in a population-based serosurvey in Vietnam[J]. Int J Infect Dis, 2022, 125: 51-57. |
17 | JANG J W, KIM J S, KIM H S, et al. Persistence of intrahepatic hepatitis B virus DNA integration in patients developing hepatocellular carcinoma after hepatitis B surface antigen seroclearance[J]. Clin Mol Hepatol, 2021, 27(1): 207-218. |
18 | WANG H, WANG M, HUANG J, et al. Novel hepatitis B virus surface antigen mutations associated with occult genotype B hepatitis B virus infection affect HBsAg detection[J]. J Viral Hepatitis, 2020, 27(9): 915-921. |
19 | KUHNS M C, HOLZMAYER V, ANDERSON M, et al. Molecular and serological characterization of hepatitis B virus (HBV)-positive samples with very low or undetectable levels of HBV surface antigen[J]. Viruses, 2021, 13(10): 2053. |
20 | LIU C, CHANG L, JIA T T, et al. Real-time PCR assays for hepatitis B virus DNA quantification may require two different targets[J]. Virol J, 2017, 14(1): 1-9. |
21 | DI NARDO F, CHIARELLO M, CAVALERA S, et al. Ten years of lateral flow immunoassay technique applications: trends, challenges and future perspectives[J]. Sensors, 2021, 21(15): 5185. |
22 | ZHOU S, HU J, CHEN X, et al. Hydrazide-assisted directional antibody conjugation of gold nanoparticles to enhance immunochromatographic assay[J]. Anal Chim Acta, 2021, 1168: 338623. |
23 | SU Z, DOU W, LIU X, et al. Nano-labeled materials as detection tags for signal amplification in immunochromatographic assay[J]. TrAC Trends Anal Chem, 2022, 154: 116673. |
24 | QIU X, XU J, SANTOS M C D, et al. Multiplexed biosensing and bioimaging using lanthanide-based time-gated forster resonance energy transfer[J]. Acc Chem Res, 2022, 55(4): 551-564. |
25 | MA H, MAO Q, ZHU Y, et al. Time-resolved fluorescence immunoassay (TRFIA) for the simultaneous detection of hs-CRP and lipoprotein (a) in serum[J]. Biotechnol Appl Biochem, 2022, 69(6): 2617-2623. |
26 | ABU N, BAKHORI N M, SHUEB R H. Lateral flow assay for hepatitis B detection: a review of current and new assays[J]. Micromachines, 2023, 14(6): 1239. |
27 | 王皓冬, 贺玉泉, 王振新, 等. 制备金纳米棒标记的免疫层析试纸条用于临床血清样本中心肌肌钙蛋白I的快速检测[J]. 分析化学, 2023, 51(6): 945-953. |
WANG H D, HE Y Q, WANG Z X, et al. Gold nanorods-based immunochromatographic test strip for rapid detection of cardiac troponin I in clinical serum samples[J]. Chin J Anal Chem, 2023, 51(6): 945-953. | |
28 | LI F, YOU M L, LI S X, et al. Based point-of-care immunoassays: recent advances and emerging trends[J]. Biotechnol Adv, 2020, 39: 107442. |
29 | LI X, WU X, WANG J, et al. Three lateral flow immunochromatographic assays based on different nanoparticle probes for on-site detection of tylosin and tilmicosin in milk and pork[J]. Sens Actuators B: Chem, 2019, 301: 127059. |
30 | HU L M, LUO K, XIA J, et al. Advantages of time-resolved fluorescent nanobeads compared with fluorescent submicrospheres, quantum dots, and colloidal gold as label in lateral flow assays for detection of ractopamine[J]. Biosens Bioelectron, 2017, 91: 95-103. |
31 | YUAN J, MATSUMOTO K, KIMURA H. A new tetradentate β-diketonate-europium chelate that can be covalently bound to proteins for time-resolved fluoroimmunoassay[J]. Anal Chem, 1998, 70(3): 596-601. |
32 | SAYYADI N, CONNALLY R E, TRY A. A novel biocompatible europium ligand for sensitive time-gated immunodetection[J]. Chem Commun, 2016, 52(6): 1154-1157. |
33 | ARMBRUSTER D A, PRY T. Limit of blank, limit of detection and limit of quantitation[J]. Clin Biochem Rev, 2008, 29(Suppl 1): 49-52. |
34 | TYAS A A, RAENI S F, SAKTI S P, et al. Recent advances of hepatitis B detection towards paper-based analytical devices[J]. Sci World J, 2021, 6643573 |
35 | LIU J, YU Q, ZHAO G, et al. A novel immunochromatographic assay using ultramarine blue particles as visible label for quantitative detection of hepatitis B virus surface antigen[J]. Anal Chim Acta, 2020, 1098: 140-147. |
[1] | 杨赛男, 李平, 吕圆, 罗海勇, 张玲玲, 戴斌, 汪啸. 不同智能手机图像比色法的台间差异[J]. 应用化学, 2024, 41(10): 1481-1490. |
[2] | 崔赛, 孟雅婷, 王松柏, 董川, 双少敏. 溶剂依赖型碳点的制备及水含量检测和防伪应用[J]. 应用化学, 2024, 41(7): 937-947. |
[3] | 郭国英, 赵墨晅, 梁文婷, 弓韬, 董川. 金纳米球-氧化石墨烯纳米药物载体的制备及抗癌性能[J]. 应用化学, 2024, 41(7): 976-986. |
[4] | 王瑶瑶, 孙铭阳, 杨钻, 杜绍恺, 何禹璇, 孙越. 基于柔性电极和信号放大技术构建检测磷脂酶C的电化学传感器[J]. 应用化学, 2024, 41(7): 987-997. |
[5] | 柴小静, 赵瑞瑞, 张羱, 董川, 双少敏. 金属有机框架Cu@Sc-MOF纳米酶对5΄-三磷酸腺苷的比色/荧光检测[J]. 应用化学, 2024, 41(5): 728-738. |
[6] | 舒杨, 杨曼, 李志豪, 王建华. 基于金纳米粒子聚集与杂交链式扩增的microRNA传感[J]. 应用化学, 2024, 41(1): 109-117. |
[7] | 张越, 梁蕊, 赵灿男, 李春梅. 氧化石墨烯-DNA纳米探针用于三磷酸腺苷的检测与药物递送[J]. 应用化学, 2024, 41(1): 118-127. |
[8] | 周学敏, 吕姝臻, 张国芳, 崔竹梅, 毕赛. 基于上转换信标探针构建信号放大近红外激发荧光生物传感器用于microRNA检测[J]. 应用化学, 2024, 41(1): 137-146. |
[9] | 刘凌波, 李双, 吴康兵. 激光雕刻石墨烯阵列电极测定曲美他嗪[J]. 应用化学, 2024, 41(1): 147-155. |
[10] | 于盼, 王光辉, 郭建花, 郭峤志, 董川. 黄色荧光碳点用于盐酸金霉素的检测[J]. 应用化学, 2023, 40(7): 1017-1023. |
[11] | 张月霞, 范小鹏, 曹宇娟, 杨欣彤, 李忠平, 杨振华, 董川. 热解法制备油溶性碳量子点用于土霉素的检测[J]. 应用化学, 2023, 40(4): 509-517. |
[12] | 姚競, 戴明明. 基于乘用车轮胎胎面胶粉的再生橡胶的制备及性能[J]. 应用化学, 2023, 40(1): 52-58. |
[13] | 闫美玲, 彭红珍, 左婷婷, 田甜, 诸颖, 孙艳红. 四面体框架核酸对脑靶向肽分子的可控组装及性能[J]. 应用化学, 2022, 39(10): 1501-1509. |
[14] | 王文栋, 李在均. 钌-石墨烯量子点人工酶合成及用于胡萝卜中辛硫磷的光度检测[J]. 应用化学, 2022, 39(8): 1285-1293. |
[15] | 牛青芳, 艾欣, 王奕璇, 贺方玖, 罗彼, 梁文婷, 董川. 三维还原氧化石墨烯/β-环糊精复合物的合成及其电化学检测水中左氧氟沙星[J]. 应用化学, 2022, 39(7): 1129-1137. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||