1 |
SURATEKAR R, PANDA A, RAGHU P, et al. Evidence of sinks and sources in the phospholipase C-activated PIP2 cycle[J]. FEBS Lett, 2018, 592(6): 962-972.
|
2 |
FUKAMI K, INANOBE S, KANEMARU K, et al. Phospholipase C is a key enzyme regulating intracellular calcium and modulating the phosphoinositide balance[J]. Prog Lipid Res, 2010, 49(4): 429-437.
|
3 |
KANEMARU K, NAKAMURA Y. Activation mechanisms and diverse functions of mammalian phospholipase C[J]. Biomolecules, 2023, 13(6): 915.
|
4 |
SINGH V, RAI R, MATHEW B J, et al. Phospholipase C: underrated players in microbial infections[J]. Front Cell Infect Microbiol, 2023, 13: 1089374.
|
5 |
EURTIVONG C, LEUNG E, SHARMA N, et al. Phosphatidylcholine-specific phospholipase C as a promising drug target[J]. Molecules, 2023, 28(15): 5637.
|
6 |
SALUCCI S, ARAMINI B, BARTOLETTI-STELLA A, et al. Phospholipase family enzymes in lung cancer: looking for novel therapeutic approaches[J]. Cancers, 2023, 15(12): 3245.
|
7 |
SEO E B, JANG H J, KWON S H, et al. Loss of phospholipase Cγ1 suppresses hepatocellular carcinogenesis through blockade of STAT3-mediated cancer development[J]. Hepatol Commun, 2022, 6(11) :3234-3246.
|
8 |
LI X, MENG P, SUN M, et al. An ultrasensitive electrochemical sensor for phospholipase C via signal amplification based on breathing ATRP and its application[J]. Analyst, 2023, 148(10): 2352-2361.
|
9 |
LI X, YANG Z, MENG P, et al. Ultrasensitive electrochemical detection of phospholipase C via dual signal amplification based on MVL ATRP and silver nanoparticles[J]. Microchem J, 2023, 191: 108847.
|
10 |
李宇轩, 陈婷, 李鲁艳, 等. 碳布基树枝状PbO2在H2O2电化学传感器中的应用[J]. 山东建筑大学学报, 2023, 38(1): 95-101.
|
|
LI Y X, CHEN T, LI L Y, et al. Application of carbon cloth based dendritic PbO2 in H2O2 electrochemical sensor[J].J Shandong Jianzhu Univ, 2023, 38(1): 95-101.
|
11 |
马闯, 高娟娟, 张树鹏, 等. 基于不同工作电极的亚硝酸盐电化学传感器[J]. 大学化学, 2018, 33(6): 1-10.
|
|
MA C, GAO J J, ZHANG S P, et al. Electrochemical sensors for nitrite based on different working electrodes[J]. Univ Chem, 2018, 33(6): 1-10.
|
12 |
TORRINHA Á, MORAIS S. Electrochemical (bio) sensors based on carbon cloth and carbon paper: an overview[J]. Trends Environ Anal, 2021, 142: 116324.
|
13 |
SARKAR P K, KAMILYA T, ACHARYA S. Introduction of triboelectric positive bioplastic for powering portable electronics and self-powered gait sensor[J]. ACS Appl Energ Mater, 2019, 2(8): 5507-5514.
|
14 |
DE PENNING R, MONZON N, PADALKAR S. Flexible zinc oxide-based biosensors for detection of multiple analytes[J]. Mater Res, 2022, 37: 2942-2950.
|
15 |
ZHOU Y, LV Y, DONG H, et al. Ultrasensitive assay of amyloid-beta oligomers using Au-vertical graphene/carbon cloth electrode based on poly(thymine)-templated copper nanoparticles as probes[J]. Sens Actuators B: Chem, 2021, 331:129429.
|
16 |
SHI J, LIN Y, QIN W, et al. Superior performance of a graphdiyne self-powered biosensor with exonuclease Ⅲ-assisted signal amplification for sensitive detection of microRNAs[J]. Analyst, 2022, 147(22): 4991-4999.
|
17 |
LIU Q, JIAN L, LIU R, et al. Metal-free photoinduced atom transfer radical polymerization for highly sensitive detection of lung cancer DNA[J]. Chem-Eur J, 2020, 26(7): 1633-1639.
|
18 |
APATA I E, TAWADE B V, CUMMINGS S P, et al. Comparative study of polymer-grafted BaTiO3 nanoparticles synthesized using normal ATRP as well as ATRP and ARGET-ATRP with sacrificial initiator with a focus on controlling the polymer graft density and molecular weight[J]. Molecules, 2023, 28(11): 4444.
|
19 |
LI S Y, SCHON B S, TRAVAS-SEJDIC J. Grafting of porous conductive fiber mats with an antifouling polymer brush by means of filtration-based surface initiated ATRP[J]. Macromol Rapid Commun, 2023: 2300069.
|
20 |
RONG L, SANTRA A, ROSS G, et al. Polymer grafted graphene via atom transfer radical polymerization (ATRP): a rheology improver in oil-based drilling fluids[J]. Mrs Commun, 2023, 13(3): 445-450.
|
21 |
LI R, AN Z. Achieving ultrahigh molecular weights with diverse architectures for unconjugated monomers through oxygen-tolerant photoenzymatic RAFT polymerization[J]. Angew Chem Int Ed, 2020, 59(49): 22258-22264.
|
22 |
ARONOVA M A, BYRNES C, LEE Y T, et al. Quantitative stem-eels imaging of ferritin distributions in cultured erythroblasts undergoing erythropoiesis[J]. Microsc Microanal, 2018, 24(S1): 2034-2035.
|
23 |
REEDER B J. The redox activity of hemoglobins: from physiologic functions to pathologic mechanisms[J]. Antioxid Redox Sign, 2010, 13(7): 1067-1123.
|
24 |
LIN S D, YOHANNES Y B, HWANG B J, et al. The effect of 2,2,6,6-tetramethylpiperidinyl-oxide (TEMPO) as an electrolyte additive and its SEI formation on Mcmb-Electrode[J]. ECS Trans, 2020, 97(7): 135.
|
25 |
梁华哲. 聚酰胺胺负载TEMPO的制备及其催化氧化性能[D]. 石家庄: 河北科技大学, 2020.
|
|
LIANG H Z. Preparation of polyamide amine-supported TEMPO and its catalytic oxidation performance[D]. Shijiazhuang: Hebei University of Science and Technology, 2020.
|
26 |
饶春美, 高致远, 徐玉兵, 等. 双抗体夹心法测定血清YKL-40在肝硬化中的诊断价值研究[J]. 现代免疫学, 2017, 37(4): 313-316.
|
|
RAO C M, GAO Z Y, XU Y B, et al. Diagnostic value of double-antibody sandwich ELISA for serum YKL-40 in patients with liver cirrhosis.[J]. Curr Immunol, 2017, 37(4): 313-316.
|
27 |
WANG S, MENG H, LI Y, et al. Polymer brushes grafted from graphene via bioinspired polydopamine chemistry and activators regenerated by electron transfer atom transfer radical polymerization[J]. J Polym Sci Pol Chem, 2019, 57(6): 689-698.
|
28 |
SU H L, YANG M M, ZHAO L M, et al. Recyclable magnetic Fe3O4 supported photocatalyst for the metal-free ATRP[J]. Eur Polym J, 2022, 177: 111476.
|
29 |
BESPALOV I, DATLER M, BUHR S, et al. Initial stages of oxide formation on the Zr surface at low oxygen pressure: an in situ FIM and XPS study[J]. Ultramicroscopy, 2015, 159: 147-151.
|
30 |
LI X, CHEN Z, CHEN Z, et al. An experimental and theoretical study on the photoluminescence of O and Br co-doped ZnS quantum dots synthesized by a solid-state reaction method[J]. J Alloy Compd, 2020, 845: 155405.
|
31 |
CHAPMAN P, DUCKER R E, HURLEY C R, et al. Fabrication of two-component, brush-on-brush topographical microstructures by combination of atom-transfer radical polymerization with polymer end-functionalization and photopatterning[J]. Langmuir, 2015, 31(21): 5935-5944.
|
32 |
SUN H, QIU Y, LU Y, et al. Ultrasensitive DNA electrochemical biosensor based on MnTBAP biomimetic catalyzed AGET ATRP signal amplification reaction[J]. Chem Commun, 2020, 56: 6636-6639.
|
33 |
AHMADPOUR S, TASHKHOURIAN J, HEMMATEENEJAD B. A chemometric investigation on the influence of the nature and concentration of supporting electrolyte on charging currents in electrochemistry[J]. J Electroanal Chem, 2020, 871: 114296.
|
34 |
GUO W, YIN Y X, XIN S, et al. Superior radical polymer cathode material with a two-electron process redox reaction promoted by graphene[J]. Energ Environ Sci, 2012, 5(1): 5221-5225.
|
35 |
WEI Y C, LI Y C, CHUNG M O, et al. Synthesis of fluorescent gold nanodot-liposome hybrids for detection of phospholipase C and its inhibitor[J]. Anal Chem, 2013, 85(18): 8834-8840.
|
36 |
TORLEY L, SILVERSTRIM C, PICKETT W. A turbidometric assay for phospholipase C andsphingomyelinase[J]. Anal Biochem, 1994, 222(2): 461-464.
|
37 |
MURAKAMI C, MIZUNO S, KADO S, et al. Development of a liquid chromatography-mass spectrometry based enzyme activity assay for phosphatidylcholine-specific phospholipase C[J]. Anal Biochem, 2017, 526: 43-49.
|
38 |
LIU Y, OGAWA K, SCHANZE K S. Conjugated polyelectrolyte based real-time fluorescence assay for phospholipase C[J]. Anal Chem, 2008, 80(1): 150-158.
|