1 |
CHEN M Z, ZHANG Y Y, XING G C, et al. Electrochemical energy storage devices working in extreme conditions[J]. Energ Environ Sci, 2021,14(6): 3323-3351.
|
2 |
衡永丽, 谷振一, 郭晋芝, 等. 水系锌离子电池用钒基正极材料的研究进展[J]. 物理化学学报, 2021, 37(3): 2005013.
|
|
HENG Y L, GU Z Y, GUO J Z, et al. Research progresses on vanadium-based cathode mate‐rials for aqueous zinc-ion batteries[J]. Acta Phys Chim Sin,2021, 37(3): 2005013.
|
3 |
LU X, WANG Y, XU X, et al. Polymer-based solid-state electrolytes for high-energy-density lithium-ion batteries-review[J]. Adv Energy Mater, 2023, 13(38): 2301746.
|
4 |
WANG H, LI X, ZENG Q, et al. A novel hyperbranched polyurethane solid electrolyte for room temperature ultra-long cycling lithium-ion batteries[J]. Energy Storage Mater, 2024, 66: 103188.
|
5 |
DONG N, ZHANG F L, PAN H L. Towards the practical application of Zn metal anodes for mild aqueous rechargeable Zn batteries[J]. Chem Sci, 2022, 13(28): 8243-8252.
|
6 |
ZHOU J H, WU F, MEI Y, et al. Establishing thermal infusion method for stable zinc metal anodes in aqueous zinc-ion batteries[J]. Adv Mater, 2022, 34(21): 2200782.
|
7 |
LI C, JIN S, ARCHER L A, et al. Toward practical aqueous zinc-ion batteries for electrochemical energy storage[J]. Joule,2022, 6(8): 1733-1738.
|
8 |
WANG J D, ZHANG B, CAI Z, et al. Stable interphase chemistry of textured Zn anode for rechargeable aqueous batteries[J]. Sci Bull, 2022, 67(7): 716-724.
|
9 |
ZHAO J, YING Y P, WANG G L, et al. Covalent organic framework film protected zinc anode for highly stable rechargeable aqueous zinc-ion batteries[J]. Energy Storage Mater, 2022, 48: 82-89.
|
10 |
WANG S N, LI T Y, YIN Y B, et al. High-energy-density aqueous zinc-based hybrid supercapacitor-battery with uniform zinc deposition achieved by multifunctional decoupled additive[J]. Nano Energy, 2022, 96: 107120.
|
11 |
ZHANG X Q, CHEN J, CAO H, et al. Efficient suppression of dendrites and side reactions by strong electrostatic shielding effect via the additive of Rb2SO4 for anodes in aqueous zinc-ion batteries[J]. Small, 2023, 19(52): 2303906.
|
12 |
CHEN R W, ZHANG W, HUANG Q B, et al. Trace amounts of triple-functional additives enable reversible aqueous zinc-ion batteries from a comprehensive perspective[J]. Nano-Micro Lett, 2023, 15(1): 81.
|
13 |
TAO L, GUAN K L, YANG R, et al. Dual-protected zinc anodes for long-life aqueous zinc ion battery with bifunctional interface constructed by zwitterionic surfactants[J]. Energy Storage Mater, 2023, 63: 102981.
|
14 |
SHI M, WANG R, HE J, et al. Multiple redox-active cyano-substituted organic compound integrated with MXene for high-performance flexible aqueous K-ion battery[J]. Chem Eng J, 2022, 450: 138238.
|
15 |
CHEN J, ZHOU W, QUAN Y, et al. Ionic liquid additive enabling anti-freezing aqueous electrolyte and dendrite-free Zn metal electrode with organic/inorganic hybrid solid electrolyte interphase layer[J]. Energy Storage Mater, 2022, 53: 629-637.
|
16 |
YAN Q, HU Z, LIU Z, et al. Synergistic interaction between amphiphilic ion additive groups for stable long-life zinc ion batteries[J]. Energy Storage Mater, 2024, 67: 103299.
|
17 |
刘欢, 马宇, 曹斌, 等. MXenes 在水系锌离子电池中的应用研究进展[J]. 物理化学学报, 2023, 39(5): 2210027.
|
|
LIU H, MA Y, CAO B, et al. Recent progress of MXenes in aqueous zinc-ion batteries[J]. Acta Phys Chim Sin, 2023, 39(5): 2210027.
|
18 |
LIU Z X, WANG R, MA Q W, et al. A dual-functional organic electrolyte additive with regulating suitable overpotential for building highly reversible aqueous zinc ion batteries[J]. Adv Funct Mater, 2023: 2214538.
|
19 |
ZHENG H, HUANG Y, XIAO J, et al. Multi-protection of zinc anode via employing a natural additive in aqueous zinc ion batteries[J]. Chem Eng J, 2023, 468: 143834.
|
20 |
JI H J, HAN Z Q, LIN Y H, et al. Stabilizing zinc anode for high-performance aqueous zinc ion batteries via employing a novel inositol additive[J]. J Alloy Compd, 2022, 914: 165231.
|
21 |
YANG J Z, YIN B S, SUN Y, et al. Zinc anode for mild aqueous zinc-ion batteries: challenges, strategies, and perspectives[J]. Nano-Micro Lett, 2022, 14: 1-47.
|
22 |
GUO S, QIN L P, ZHANG T S, et al. Fundamentals and perspectives of electrolyte additives for aqueous zinc-ion batteries[J]. Energy Storage Mater, 2021, 34: 545-562.
|
23 |
CAO H, HUANG X M, LIU Y, et al. An efficient electrolyte additive of tetramethylammonium sulfate hydrate for dendritic-free zinc anode for aqueous zinc-ion batteries[J]. J Colloid Interface Sci, 2022, 627: 367-374.
|
24 |
GENG Y F, PAN L, PENG Z Y, et al. Electrolyte additive engineering for aqueous Zn ion batteries[J]. Energy Storage Mater, 2022, 51: 733-755.
|
25 |
THIEU N A, LI W, CHEN X J, et al. Synergistically stabilizing zinc anodes by molybdenum dioxide coating and Tween 80 electrolyte additive for high-performance aqueous zinc-ion batteries[J]. ACS Appl Mater Interfaces, 2023, 15: 55570-55586.
|
26 |
LIU Z X, WANG R, GAO Y C, et al. Low-cost multi-function electrolyte additive enabling highly stable interfacial chemical environment for highly reversible aqueous zinc ion batteries[J]. Adv Funct Mater, 2023, 33: 2308463.
|
27 |
ZHOU W J, CHEN M F, TIAN Q H, et al. Stabilizing zinc deposition with sodium lignosulfonate as an electrolyte additive to improve the life span of aqueous zinc-ion batteries[J]. J Colloid Interface Sci, 2021, 601: 486-494.
|
28 |
DONG H Y, YAN S X, LI T F, et al. Chelating dicarboxylic acid as a multi-functional electrolyte additive for advanced Zn anode in aqueous Zn-ion batteries[J]. J Power Sources, 2023, 585: 233593.
|
29 |
YIN J Y, LIU H L, LI P, et al. Integrated electrolyte regulation strategy: trace trifunctional tranexamic acid additive for highly reversible Zn metal anode and stable aqueous zinc ion battery[J]. Energy Storage Mater, 2023, 59: 102800.
|
30 |
HONG L, WU X M, WANG L Y, et al. Highly reversible zinc anode enabled by a cation-exchange coating with Zn-ion selective channels[J]. ACS Nano, 2022, 16(4): 6906-6915.
|
31 |
GUAN Q L, LI J H, LI L J, et al. In situ construction of organic anion-enriched interface achieves ultra-long life aqueous zinc-ion battery[J]. Chem Eng J, 2023, 476: 146534.
|
32 |
YAO R, QIAN L, SUI Y M, et al. A versatile cation additive enabled highly reversible zinc metal anode[J]. Adv Energy Mater, 2022, 12(2): 2102780.
|
33 |
CAO P H, ZHOU X Y, WEI A R, et al. Fast-charging and ultrahigh-capacity zinc metal anode for high-performance aqueous zinc-ion batteries[J]. Adv Funct Mater, 2021, 31(20): 2100398.
|
34 |
TIAN Z, ZOU Y, LIU G, et al. Electrolyte solvation structure design for sodium ion batteries[J]. Adv Sci, 2022, 9(22): 2201207.
|
35 |
CHENG H, SUN Q, LI L, et al. Emerging era of electrolyte solvation structure and interfacial model in batteries[J]. ACS Energy Lett, 2022, 7(1): 490-513.
|
36 |
LI L, CHENG H, ZHANG J, et al. Quantitative chemistry in electrolyte solvation design for aqueous batteries[J]. ACS Energy Lett, 2023, 8(2): 1076-1095.
|
37 |
XIE C L, LI Y H, WANG Q, et al. Issues and solutions toward zinc anode in aqueous zinc-ion batteries: a mini review[J]. Carbon Energy, 2020, 2(4): 540-560.
|
38 |
HAN C, LI W J, LIU H K, et al. Principals and strategies for constructing a highly reversible zinc metal anode in aqueous batteries[J]. Nano Energy, 2020, 74: 104880.
|
39 |
YANG S, CHEN A, TANG Z J, et al. Regulating the electrochemical reduction kinetics by the steric hindrance effect for a robust Zn metal anode[J]. Energ Environ Sci, 2024, 17(3): 1095-1106.
|
40 |
SU K L M, ZHANG X Y, ZHANG X Q, et al. Polar small molecular electrolyte additive for stabilizing Zn anode[J]. Chem Eng J, 2023, 474: 145730.
|
41 |
WU C, SUN C, REN K, et al. 2-Methyl imidazole electrolyte additive enabling ultra-stable Zn anode[J]. Chem Eng J, 2023, 452: 139465.
|
42 |
ZHAO Y, HONG H, ZHONG L, et al. Zn-rejuvenated and SEI-regulated additive in zinc metal battery via the iodine post-functionalized zeolitic imidazolate framework-90[J]. Adv Energy Mater, 2023, 13(28): 2300627.
|
43 |
ZHANG Q, MA Y, LU Y, et al. Designing anion-type water-free Zn2+ solvation structure for robust Zn metal anode[J]. Angew Chem, 2021, 133(43): 23545-23552.
|
44 |
CHEN Y M, GONG F C, DENG W J, et al. Dual-function electrolyte additive enabling simultaneous electrode interface and coordination environment regulation for zinc-ion batteries[J]. Energy Storage Mater, 2023, 58: 20-29.
|
45 |
QUAN Y H, YANG M, CHEN M F, et al. Electrolyte additive of sorbitol rendering aqueous zinc-ion batteries with dendrite-free behavior and good anti-freezing ability[J]. Chem Eng J, 2023, 458: 141392.
|