应用化学 ›› 2024, Vol. 41 ›› Issue (7): 998-1009.DOI: 10.19894/j.issn.1000-0518.240029

• 研究论文 • 上一篇    下一篇

氮杂环咪唑离子液体用于水系锌离子电池负极无枝晶保护

徐磊1,2, 王龙洋1,2, 桃李1,2(), 张浩男1,2, 贾鑫旺1,2, 万厚钊1,2, 张军1,2, 王浩1,2()   

  1. 1.湖北大学微电子学院,武汉 430062
    2.湖北江城实验室,武汉 430205
  • 收稿日期:2024-01-29 接受日期:2024-05-15 出版日期:2024-07-01 发布日期:2024-08-03
  • 通讯作者: 桃李,王浩
  • 基金资助:
    湖北省自然科学基金项目(2022CFB402);国家自然科学基金项目(52272198)

Long-Term Aqueous Zinc-Ion Batteries without Dendrites Protected by Nitrogen Heterocyclic Imidazole Ionic Liquid

Lei XU1,2, Long-Yang WANG1,2, Li TAO1,2(), Hao-Nan ZHANG1,2, Xin-Wang JIA1,2, Hou-Zhao WAN1,2, Jun ZHANG1,2, Hao WANG1,2()   

  1. 1.School of Microelectronics,Hubei University,Wuhan 430062,China
    2.Hubei Yangtze Memory Laboratories,Wuhan 430205,China
  • Received:2024-01-29 Accepted:2024-05-15 Published:2024-07-01 Online:2024-08-03
  • Contact: Li TAO,Hao WANG
  • About author:wangh@hubu.edu.cn
    litao@hubu.edu.cn
  • Supported by:
    the Natural Science Foundation of Hubei Province(2022CFB402);the National Natural Science Foundation of China(52272198)

摘要:

根据可持续发展的需要以及更好地去实现碳达峰、碳中和,水系锌离子电池由于其安全可靠、成本低及离子电导率高等特点逐渐进入人们的视线。 相比于传统的锂离子电池,可充电的水系锌离子电池具有很高的安全稳定性,同时,锌金属资源丰富、理论容量(820 mA·h/g)高、氧化还原电位(-0.762 V(vs.SHE))低,这也缓解了金属锂的资源压力。 但是,电解质中的活性水会严重腐蚀锌负极,发生析氢反应(HER),并产生羟基硫酸锌(ZHS)等副产物以及引起枝晶生长,从而使电池循环性能大大降低,达不到储能要求。 结果表明,通过离子液体添加剂优化水系锌离子电解液,实现了循环过程中无枝晶的锌负极,其中氯化1-氰丁基-3-甲基咪唑(MCBI)添加剂在最佳添加浓度条件下,Zn//Cu半电池200圈库伦效率可达99.37%,Zn//Zn对称电池在小电流密度下可稳定循环1600 h以上,即使在10 mA/cm2、5 mA·h/cm2下也能稳定循环1000 h以上; 全电池循环500次后依旧有88.5%的高容量保持率。 这项工作解决了水系锌离子电池枝晶问题,并在优化电解质体系方面提供了一个全新的视角。

关键词: 水系锌离子电池, 电解液, 添加剂, 锌阳极, 枝晶, 离子液体

Abstract:

With the development of social industrialization, energy issues have become a hot topic at present. Traditional lithium-ion batteries, due to their poor safety and high cost, cannot meet the current application needs in the energy storage field in the long term. Therefore, the development of suitable new energy has aroused people's deep thinking. Aqueous zinc-ion batteries (AZIBs) have attracted attention from the scientific research community in recent years due to their high safety, cleanliness, and other advantages. However, dendrites are easily grown on the zinc anode, and free water molecules can also corrode the zinc anode, causing side reactions such as hydrogen evolution and passivation, seriously affecting the long-term cycling performance and stability of the battery. This work introduces a new type of ionic liquid additive 1-cyanobutyl-3-methylimidazole chloride (MCBI) to optimize aqueous electrolytes. Before the deposition of zinc ions on the anode surface, MCBI cations will preferentially land on the anode. Due to their special structures of Electron-withdrawing group and nitrogen heterocycles, they will tightly adsorb on the zinc surface in a unique shape of the “Check mark” posture. This provides abundant sites for the deposition of zinc ions, allowing zinc atoms to arrange regularly between MCBI ions, thereby reducing the generation of dendrites. Due to the steric hindrance effect, by-products (Zinc hydroxide sulfate) will also accumulate in an orderly manner around additive ions, forming channels for uniform deposition of zinc ions; The hydrophobic alkyl groups of MCBI cations will repel most of the free water molecules outside the anode, thereby reducing hydrogen evolution reaction (HER). In this work, under the optimal concentration conditions, the Coulomb efficiency of Zn//Cu asymmetric cell with MCBI additive can reach 99.37% after 200 cycles; Zn//Zn symmetric batteries can stably cycle for more than 1600 h at low current density (0.5 mA/cm2), and can cycle for more than 1000 h at 10 mA/cm2, 5 mA·h/cm2. Finally, VO2 as the cathode maintains a high-capacity retention rate of 88.5% after 500 cycles in the full battery. This work provides new ideas for the anode modification strategy of aqueous zinc ion batteries.

Key words: Aqueous zinc ion battery, Electrolyte, Additive, Zinc anode, Dendrite, Ionic liquid

中图分类号: