1 |
LOCKRIDGE O. Review of human butyrylcholinesterase structure, function, genetic variants, history of use in the clinic, and potential therapeutic uses[J].Pharmacol Ther, 2015, 148: 34-46.
|
2 |
DIVR H, SILMAN I, HAREL M, et al. Acetylcholinesterase: from 3D structure to function[J]. Chem Biol Interact, 2010, 187: 10-22.
|
3 |
IBACH B, HAEN E. Acetylcholinesterase inhibition in Alzheimer's disease[J]. Curr Pharm Des, 2004, 10: 231-251.
|
4 |
LIU S Y, XIONG H, YANG J Q, et al. Discovery of butyrylcholinesterase-activated near-infrared fluorogenic probe for live-cell and in vivo imaging[J]. ACS Sens, 2018, 3: 2118-2128.
|
5 |
DARVESH S, HOPKINS D, GEULA C. Neurobiology of butyrylcholinesterase[J]. Nat Rev Neurosci, 2003,4: 131-138.
|
6 |
CHEN G L, FENG H, JIANG X G, et al. Redox-controlled fluorescent nanoswitch based on reversible disulfide and its application in butyrylcholinesterase activity assay[J]. Anal Chem, 2018, 90: 1643-1651.
|
7 |
YU Z, DONG W, WU S, et al. Identification of ovalbumin-derived peptides as multi-target inhibitors of AChE, BChE, and BACE1[J]. J Sci Food Agric, 2020, 100: 2648-2655.
|
8 |
GREIG N H, LAHIRI D K, SAMBAMURTI K. Butyrylcholinesterase: an important new target in Alzheimer's disease therapy[J]. Int Psychogeriatr, 2002, 14: 77-91.
|
9 |
RAO A A, SRIDHAR G R, DAS U N. Elevated butyrylcholinesterase and acetylcholinesterase may predict the development of type 2 diabetes mellitus and Alzheimer's disease[J].Med Hypoth, 2007, 69(6): 1272-1276.
|
10 |
RENOU J, LOIODICE M, ARBOLÉAS M, et al. Tryptoline-3-hydroxypyridinaldoxime conjugates as efficient reactivators of phosphylated human acetyl and butyrylcholinesterase[J]. Chem Commun, 2014, 50: 3947-3950.
|
11 |
ZHOU G, WANG F, WANG H, et al. Colorimetric and fluorometric assays based on conjugated polydiacetylene supramolecules for screening acetylcholinesterase and its inhibitors[J]. ACS Appl Mater Interfaces, 2013, 5: 3275-3280.
|
12 |
ELLMAN G L, COURTNEY K D, ANDRES V, et al. A new and rapid colorimetric determination of acetylcholinesterase activity[J]. Biochem Pharmacol, 1961, 7: 88-95.
|
13 |
LIAO S Z, HAN W T, DING H Z, et al. Modulated dye retention for the signal-on fluorometric determination of acetylcholinesterase inhibitor[J]. Anal Chem, 2013, 85: 4968-4973.
|
14 |
MIAO Y, HE N, ZHU J J. History and new developments of assays for cholinesterase activity and inhibition[J]. Chem Rev, 2010, 110: 5216-5234.
|
15 |
HOLAS O, MUSILEK K, POHANKA M. et al. The progress in the cholinesterase quantification methods[J]. Expert Opin Drug Discov, 2012, 7: 1207-1223.
|
16 |
CHEN Z, REN X, MENG X, et al. Quantum dots-based fluorescent probes for turn-on and turn-off sensing of butyrylcholinesterase[J]. Biosens Bioelectron, 2013, 44: 204-209.
|
17 |
XU D, LIN Q, CHANG H T. Recent advances and sensing applications of carbon dots[J]. Small Methods, 2020, 4: 1900387.
|
18 |
SUN X, ZHAI C, WANG X. A novel and highly sensitive acetyl-cholinesterase biosensor modified with hollow gold nanospheres[J]. Bioprocess Biosyst Eng, 2013, 36: 273-283.
|
19 |
ZHANG X P, ZHAO C X, SHU Y, et al. Gold nanoclusters/iron oxyhydroxide platform for ultrasensitive detection of butyrylcholinesterase[J]. Anal Chem, 2019, 91: 15866-15872.
|
20 |
MA J, LU X, ZHAI H, et al. Rational design of a near-infrared fluorescence probe for highly selective sensing butyrylcholinesterase (BChE) and its bioimaging applications in living cell[J]. Talanta, 2020, 219: 121278.
|
21 |
ZHANG Q, FU C, GUO X, et al. Fluorescent determination of butyrylcholinesterase activity and its application in biological imaging and pesticide residue detection[J]. ACS Sens, 2021, 6: 1138-1146.
|
22 |
WAN C, LI J, GAO J, et al. Ratiometric fluorescence assay for butyrylcholinesterase activity based on a hemicyanine and its application in biological imaging[J]. Dyes Pigm, 2022, 197: 109874.
|
23 |
CAO T, ZHENG L, ZHANG L, et al. A highly butyrylcholinesterase selective red-emissive mitochondria-targeted fluorescent indicator imaging in liver tissue of mice[J]. Sens Actuators B: Chem, 2021, 330: 129348.
|
24 |
YANG Y X, ZHANG L, WANG J M, et al. Diagnosis of Alzheimer's disease and in situ biological imaging via an activatable near-infrared fluorescence probe[J]. Anal Chem, 2022, 94(39): 13498-13506.
|
25 |
PRONIN D, KRISHNAKUMAR S, RYCHLIK M, et al. Development of a fluorescent probe for measurement of singlet oxygen scavenging activity of flavonoids[J]. Agric Food Chem,2019, 67(38): 10726-10733.
|
26 |
TONG C Y, SHI F Y, TONG X, et al. Shining natural flavonols in sensing and bioimaging[J]. Trends Anal Chem, 2021, 137, 116222.
|
27 |
鞠志宇, 舒鹏华, 谢智宇, 等. 一种黄酮荧光探针对肼的识别及细胞成像[J]. 有机化学, 2019, 39(3): 697-702.
|
|
JU Z Y, SHU P H, XIE Z Y, et al. A flavone-based fluorescent probe for hydrazine and its bioimaging in live cells[J]. Chin J Org Chem, 2019, 39(3): 697-702.
|
28 |
QIN T, HUANG Y, ZHU K, et al. A flavonoid-based fluorescent test strip for sensitive and selective detection of a gaseous nerve agent simulant[J]. Anal Chim Acta, 2019, 1076: 125-130.
|
29 |
ZHU K, LV T, QIN T, et al. A flavonoid-based fluorescent probe enables the accurate quantification of human serum albumin by minimizing the interference from blood lipids[J]. Chem Commun, 2019, 55: 13983-13986.
|
30 |
QIN T, LIU B, HUANG Y, et al. Ratiometric fluorescent monitoring of methanol in biodiesel by using an ESIPT-based flavonoid probe[J]. Sens Actuators B: Chem, 2018, 277: 484-491.
|
31 |
杨亚成, 赵永梅, 王清照, 等.一种裸眼识别的反应型铜离子荧光探针[J]. 精细化工, 2018, 35(4): 569-573.
|
|
YANG Y C, ZHAO Y M, WANG Q Z, et al. A reactive copper ion fluorescence probe for naked eye recognition[J]. Fine Chem,2018, 35(4): 569-573.
|
32 |
BORTOLAMI M, ROCCO D, MESSORE A, et al. Acetylcholinesterase inhibitors for the treatment of Alzheimer's disease-a patent review (2016-present)[J]. Expert Opin Ther Pat, 2021, 31: 399-420.
|
33 |
MESULAM M, GUILLOZET A, SHAW P, et al. Acetylcholinesterase knockouts establish central cholinergic pathways and can use butyrylcholinesterase to hydrolyze acetylcholine[J].Neuroscience, 2002, 110: 627-639.
|
34 |
王莲萍, 李庆杰, 刘晓艳, 等. 基于UFLC-MS/分子模拟计算的吴茱萸醇提取物中胆碱酯酶抑制剂筛选[J]. 高等学校化学学报, 2020, 41(1): 111-117.
|
|
WANG L P, LI Q J, LIU X Y, et al. Screening of cholinesterase inhibitors from alcohol extract of Evodia rutaecarpa based on UFLC-MS/molecular simulation[J]. Chem J Chin Univ,2020, 41(1): 111-117.
|
35 |
YANG S H, SUN Q, XIONG H, et al. Discovery of a butyrylcholinesterase-specific probe via a structure-based design strategy[J]. Chem Commun, 2017, 53: 3952-3955.
|
36 |
https://www.sigmaaldrich.cn/deepweb/assets/sigmaaldrich/product/documents/330/255/c1057enz.pdf.
|
37 |
WANG X, LI P, DING Q, et al. Observation of acetylcholinesterase in stress-induced depression phenotypes by two-photon fluorescence imaging in the mouse brain[J]. J Am Chem Soc, 2019, 141: 2061-2068.
|
38 |
OSET-GASQUE M J, GONZÁLEZ M P, PÉREZ-PEÑA J, et al. Toxicological and pharmacological evaluation, antioxidant, ADMET and molecular modeling of selected racemic chromenotacrines {11-amino-12-aryl-8,9,10,12-tetrahydro-7H-chromeno[2,3-b]quinolin-3-ols} for the potential prevention and treatment of Alzheimer's disease[J]. Eur J Med Chem, 2014, 74: 491-501.
|