应用化学 ›› 2023, Vol. 40 ›› Issue (3): 329-340.DOI: 10.19894/j.issn.1000-0518.220205
收稿日期:
2022-06-28
接受日期:
2022-11-16
出版日期:
2023-03-01
发布日期:
2023-03-27
通讯作者:
刘军辉,李想
基金资助:
Bing LI, Jun-Hui LIU(), Ya-Kun SONG, Xiang LI(), Xu-Ming GUO, Jian XIONG
Received:
2022-06-28
Accepted:
2022-11-16
Published:
2023-03-01
Online:
2023-03-27
Contact:
Jun-Hui LIU,Xiang LI
About author:
lixiang@haust.edu.cnSupported by:
摘要:
当前,化石燃料的大量消耗和对能源日益增长的需求推动了可再生和高效能源材料的开发。氢因丰富的来源以及清洁的特性而被视为潜在的能源载体。通过水解氨硼烷制备清洁可再生的氢气是解决能源问题的有效途径之一。开发高效安全的催化剂一直是该领域研究的重点和热点。金属-有机骨架材料(MOFs)因其独特的结构、组成和特性,在氨硼烷水解制氢中有广泛的应用。本文以MOFs材料在催化剂设计制备中的作用为侧重点,综述了不同MOFs材料在催化氨硼烷水解制氢反应中的作用,对其在催化氨硼烷水解制氢应用过程中所存在的问题和今后的发展进行了总结和展望。
中图分类号:
李冰, 刘军辉, 宋亚坤, 李想, 郭旭明, 熊健. 金属-有机骨架材料在催化氨硼烷水解释氢中的研究进展[J]. 应用化学, 2023, 40(3): 329-340.
Bing LI, Jun-Hui LIU, Ya-Kun SONG, Xiang LI, Xu-Ming GUO, Jian XIONG. Recent Advances in Application of Metal-Organic Frameworks for Hydrogen Generation by Catalytic Hydrolysis of Ammonia Borane[J]. Chinese Journal of Applied Chemistry, 2023, 40(3): 329-340.
Num | Catalysts | Approaches to application | TOF/(mol?mol-1?min-1) | Ea/(kJ?mol-1) | Ref. |
---|---|---|---|---|---|
1 | AuNi@MIL-101 | a | 66.2 | - | [ |
2 | Cu2Ni1@MIL-101 | a | 20.9 | 32.2 | [ |
3 | AuCo@MIL-101 | a | 23.5 | - | [ |
4 | RuCuCo@MIL-101 | a | 241.2 | 48 | [ |
5 | Cu8Ni1Co1@MIL-101 | a | 72.1 | 29.1 | [ |
6 | 1.62wt%Ru@MIL-101 | a | 144 | - | [ |
7 | Co/MIL-101-2 | a | 4.5 | - | [ |
Co/MIL-101-2-U | a | 9.9 | - | [ | |
Co/MIL-101-1 | a | 22.3 | - | [ | |
Co/MIL-101-1-U | a | 51.4 | 31.3 | [ | |
8 | CuCo@MIL-101 | a | 19.6 | - | [ |
9 | Ru1Co1@MIL-96 | a | 320.7 | 36.0 | [ |
10 | Ru/MIL-96 | a | 231 | 47.7 | [ |
11 | Ru@MIL-53(Cr) | a | 260.8 | 28.9 | [ |
Ru@MIL-53(Al) | a | 266.9 | 33.7 | [ | |
12 | CuPd0.01@ZIF-67@ZIF-8 | b | 30.15 | 28.78 | [ |
13 | cZIF-67_μm | b | 13.5 | - | [ |
cZIF-67_nm | b | 13.2 | - | [ | |
14 | Rh25Co75@ZIF-67 | a | 100.21 | - | [ |
15 | ZIF-67@Co | a | 112.3 | 25.68 | [ |
16 | Cu0.5@Co0.5-MOF/5 | b | 129.8 | 26.5 | [ |
17 | fcc-Ni/C | b | 2.10 | 40.15 | [ |
Hcp-Ni/C | b | 4.32 | 35.49 | [ | |
Hcp-CuNi/C | b | 22.64 | 29.92 | [ | |
18 | Co-MOF-74 | a | 22(h-1) | - | [ |
Co/Zn-MOF-74 | a | 176.5(h-1) | 32.8 | [ | |
19 | Pd@Co@MIL-101 | a | 51 | 22 | [ |
20 | Ag-doped Ni/MIL-101 | b | 20.2 | 25 | [ |
21 | Co/NC-50 | b | 7.6 | 44.9 | [ |
22 | NiCo-NC | b | 35.2 | 43.6 | [ |
23 | Ni0.66Co0.19P0.15/OPC-300 | b | 95.24 | 38.9 | [ |
24 | Co-CoO x @NCS-II | a | - | 46.37 | [ |
25 | Pt/MIL-101 | b | 446.4 | 40.7 | [ |
26 | Co4N-Co3O4 | b | 79 | - | [ |
27 | Cu@Ni6-MOF | b | 69.1 | 31.6 | [ |
28 | PdCo@NCHP | b | 470.57 | 36.9 | [ |
表1 MOFs基催化剂在氨硼烷水解制氢中的催化性能
Table 1 The catalytic performance of MOFs-based catalysts for hydrolytic dehydrogenation of NH3BH3
Num | Catalysts | Approaches to application | TOF/(mol?mol-1?min-1) | Ea/(kJ?mol-1) | Ref. |
---|---|---|---|---|---|
1 | AuNi@MIL-101 | a | 66.2 | - | [ |
2 | Cu2Ni1@MIL-101 | a | 20.9 | 32.2 | [ |
3 | AuCo@MIL-101 | a | 23.5 | - | [ |
4 | RuCuCo@MIL-101 | a | 241.2 | 48 | [ |
5 | Cu8Ni1Co1@MIL-101 | a | 72.1 | 29.1 | [ |
6 | 1.62wt%Ru@MIL-101 | a | 144 | - | [ |
7 | Co/MIL-101-2 | a | 4.5 | - | [ |
Co/MIL-101-2-U | a | 9.9 | - | [ | |
Co/MIL-101-1 | a | 22.3 | - | [ | |
Co/MIL-101-1-U | a | 51.4 | 31.3 | [ | |
8 | CuCo@MIL-101 | a | 19.6 | - | [ |
9 | Ru1Co1@MIL-96 | a | 320.7 | 36.0 | [ |
10 | Ru/MIL-96 | a | 231 | 47.7 | [ |
11 | Ru@MIL-53(Cr) | a | 260.8 | 28.9 | [ |
Ru@MIL-53(Al) | a | 266.9 | 33.7 | [ | |
12 | CuPd0.01@ZIF-67@ZIF-8 | b | 30.15 | 28.78 | [ |
13 | cZIF-67_μm | b | 13.5 | - | [ |
cZIF-67_nm | b | 13.2 | - | [ | |
14 | Rh25Co75@ZIF-67 | a | 100.21 | - | [ |
15 | ZIF-67@Co | a | 112.3 | 25.68 | [ |
16 | Cu0.5@Co0.5-MOF/5 | b | 129.8 | 26.5 | [ |
17 | fcc-Ni/C | b | 2.10 | 40.15 | [ |
Hcp-Ni/C | b | 4.32 | 35.49 | [ | |
Hcp-CuNi/C | b | 22.64 | 29.92 | [ | |
18 | Co-MOF-74 | a | 22(h-1) | - | [ |
Co/Zn-MOF-74 | a | 176.5(h-1) | 32.8 | [ | |
19 | Pd@Co@MIL-101 | a | 51 | 22 | [ |
20 | Ag-doped Ni/MIL-101 | b | 20.2 | 25 | [ |
21 | Co/NC-50 | b | 7.6 | 44.9 | [ |
22 | NiCo-NC | b | 35.2 | 43.6 | [ |
23 | Ni0.66Co0.19P0.15/OPC-300 | b | 95.24 | 38.9 | [ |
24 | Co-CoO x @NCS-II | a | - | 46.37 | [ |
25 | Pt/MIL-101 | b | 446.4 | 40.7 | [ |
26 | Co4N-Co3O4 | b | 79 | - | [ |
27 | Cu@Ni6-MOF | b | 69.1 | 31.6 | [ |
28 | PdCo@NCHP | b | 470.57 | 36.9 | [ |
图1 (a)溶剂蒸发法结合还原法合成Cu-Ni-Co@MIL-101示意图;(c) Cu0.8Ni0.1Co0.1@MIL-101、Cu0.8Ni0.1Co0.1@MIL-101*、Cu0.8Ni0.1Co0.1纳米粒子和MIL-101催化氨硼烷水解过程中产生氢气的时间过程图;(b、 d) Cu0.8Ni0.1Co0.1MIL-101和Cu0.8Ni0.1Co0.1@MIL-101*的TEM 图[41]
Fig. 1 (a) Schematic representation of the synthesis of the Cu-Ni-Co@MIL-101 matrix via the solvent evaporation method combined with the overwhelming reduction approach; (c) Time-course plots of H2 generation during the hydrolysis of ammonia borane catalyzed Cu0.8Ni0.1Co0.1@MIL-101, Cu0.8Ni0.1Co0.1@MIL-101*, Cu0.8Ni0.1Co0.1 NPs,and MIL-101; (b, d) TEM images of Cu0.8Ni0.1Co0.1@MIL-101 and Cu0.8Ni0.1Co0.1@MIL-101*[41]
图2 (a) 不同还原途径合成Pd@Co@MIL-101、Pd@Co/MIL-101和PdCo@MIL-101催化剂示意图; (b) 不同催化剂在77 K的N2吸附脱附曲线; (c) 不同催化剂在30 ℃的氨硼烷水解释氢性能图[55]
Fig. 2 (a) Synthesis of Pd@Co@MIL-101, Pd@Co/MIL-101 and PdCo@MIL-101 catalysts by different procedures and reducing agents; (b) N2 adsorption/desorption isotherms for different catalysts at 77 K; (c) Plots of time vs volume of hydrogen generated from the catalytic hydrolysis of AB over various catalysts at 30 °C[55]
图 3 (a、 b) 金属NPs/MOFs催化剂界面上的两种反应模式,(c) Cu x @Co1-x -MOF/5纳米催化剂合成示意图[52]
Fig. 3 (a, b) Two reaction modes on metal NPs/MOFs catcalysts interfaces, (c) Schematic illustration for the synthesis of Cu x @Co1-x -MOF/5 nanocatalysts[52]
图4 (a) Co4N-Co3O4@C的制备示意图; (b) Co4N、Co3O4和Co4N-Co3O4界面结构的电荷密度; (c, d) NH3BH3和H2O在Co4N(111); Co3O4(311)和Co4N-Co3O4(311)面上吸附和解离的能量分布[62]
Fig. 4 (a) Formation process of Co4N-Co3O4@C composites; (b) Density of states of the interface structures of Co4N, Co3O4, and Co4N-Co3O4; (c, d) Energy profiles of NH3BH3 and H2O adsorption and dissociation on Co4N(111), Co3O4(311) and Co4N-Co3O4(311) facets[62]
1 | YANG K, YANG K K, ZHANG S L, et al. Complete dehydrogenation of hydrazine borane and hydrazine catalyzed by MIL-101 supported NiFePd nanoparticles[J]. J Alloys Comp, 2018, 732: 363-371. |
2 | 鄯晓玲. Ni3B催化剂的制备及催化氨硼烷水解制氢研究[D]. 天津: 南开大学, 2014. |
SHAN X L. Preparation of Ni3B catalysts for hydrogen generation from hydrolysis of ammonia borane[D]. Tianjin: Nankai University, 2014. | |
3 | 许炜, 陶占良, 陈军. 储氢研究进展[J]. 化学进展, 2006, 18(2): 200-210. |
XU W, TAO Z L, CHEN J. Progress of research on hydrogen storage[J]. Prog Chem, 2006, 18(2): 200-210. | |
4 | 郑和闯. 碳基纳米复合材料的制备及其催化氨硼烷水解性能研究[D]. 苏州: 苏州大学, 2018. |
ZHENG H C. Carbon-based nanocomposites for high-efficiency hydrolysis of ammonia borane[D]. Suzhou: Soochow University, 2018. | |
5 | YANG Q H, XU Q, JIANG H L. Metal-organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis[J]. Chem Soc Rev, 2017, 46(15): 4774-4808. |
6 | PERRY J J, PERMAN J A, ZAWOROTKO M J. Design and synthesis of metal-organic frameworks using metal-organic polyhedra as supermolecular building blocks[J]. Chem Soc Rev, 2009, 38(5): 1400-1417. |
7 | CUI Y J, LI B, HE H J, et al. Metal-organic frameworks as platforms for functional materials[J]. Acc Chem Res, 2016: 49(3): 483-493. |
8 | 李淑蓉, 王琳, 陈玉贞, 等. 金属-有机框架材料在液相催化化学制氢中的研究进展[J]. 高等学校化学学报, 2022, 43(1): 31-44. |
LI S R, WANG L, CHEN Y Z, et al.Research progress of metalorganic frameworks on liquid phase catalytic chemical hydrogen production[J].Chem J Chin Univ, 2022, 43(1): 31-44. | |
9 | SUN J L, CHEN Y Z, GE B D, et al. Three-shell Cu@Co@Ni nanoparticles stabilized with ametal-organic framework for enhanced tandem catalysis[J]. ACS Appl Mater Inter, 2019, 11(1):940-947. |
10 | CAO N, SU J, CHENG G Z, et al. Ni-Pt nanoparticles supported on MIL-101 as highly efficient catalysts for hydrogen generation from aqueous alkaline solution of hydrazine for chemical hydrogen storage[J]. Int J Hydrogen Energy, 2014, 39(18):9726-9734. |
11 | ZHANG L, ZHOU L Q, YANG K Z, et al. Pd-Ni nanoparticles supported on MIL-101 as high-performance catalysts for hydrogen generation from ammonia borane[J]. J Alloy Compd, 2016, 677: 87-95. |
12 | CHEN M H, ZHOU L Q, LU D, et al. RuCo bimetallic alloy nanoparticles immobilized on multi-porous MIL-53(Al) as a highly efficient catalyst for the hydrolytic reaction of ammonia borane[J]. Int J Hydrogen Energy, 2018, 43(3): 1439-1450. |
13 | YOUNG C, KIM J, KANETI Y V, et al. One-step synthetic strategy of hybrid materials from bimetallic metal-organic frameworks for supercapacitor applications[J]. ACS Appl Energy Mater, 2018, 1(5):2007-2015. |
14 | CHAI L L, HU Z Y, WANG X, et al. Stringing bimetallic metal-organic framework-derived cobalt phosphide composite for high-efficiency overall water splitting[J]. Adv Sci,2020, 7(5): 1903195-1903204. |
15 | ZHU Z Q, WANG S W, DU J, et al. Ultrasmall Sn nanoparticles embedded in nitrogen-doped porous carbon as high-performance anode for lithium-ion batteries[J]. Nano Lett, 2014, 14(1): 153-157. |
16 | JIN H H, ZHOU H, LI W Q, et al. In situ derived Fe/N/S-codoped carbon nanotubes from ZIF-8 crystals as efficient electrocatalysts for oxygen reduction reaction and zinc-air batteries[J]. J Mater Chem A, 2018, 6(41): 20093-20099. |
17 | GU Z Y, YANG C X, CHANG N, et al. Metal-organic frameworks for analytical chemistry: from sample collection to chromatographic separation[J]. Acc Chem Res, 2012, 45(5): 734-745. |
18 | KAN L, LI G H, LIU Y L. Highly selective separation of C3H8 and C2H2 from CH4 within two water-stable Zn5 cluster-based metal-organic frameworks[J]. ACS Appl Mater Inter, 2020, 12(6): 18642-18649. |
19 | DING Q, ZHANG Z Q, YU C, et al. Exploiting equilibrium-kinetic synergetic effect for separation of ethylene and ethane in a microporous metal-organic framework[J]. Sci Adv, 2020, 6(15):eaaz4322-4328. |
20 | XIA T F, JIANG L C, ZHANG J, et al. A fluorometric metal-organic framework oxygen sensor: from sensitive powder to portable optical fiber device[J]. Micro Meso Mater, 2020, 305: 110396-110402. |
21 | KAJAL N, SINGH V, GUPTA R, et al. Metal organic frameworks for electrochemical sensor applications: a review[J]. Environ Res, 2021, 204:112320-112338. |
22 | WANG L Y. Metal-organic frameworks for QCM-based gas sensors: a review[J]. Sens Actuators A: Phys, 2020, 307:111984-111997. |
23 | WEI Q, SUN J, SONG P, et al. Spindle-like Fe2O3/ZnFe2O4 porous nanocomposites derived from metal-organic frameworks with excellent sensing performance towards triethylamine[J]. Sens Actuators B: Chem, 2020, 317:128205-128218. |
24 | WU Z L, HOU L L, LI W, et al. Application of a novel biomimetic double-ligand zirconium-based metal organic framework in environmental restoration and energy conversion[J]. J Colloid Interface Sci, 2021, 610:136-151. |
25 | AZHAR M R, ABID H R, TADE M O, et al. Cascade applications of robust MIL-96 metal organic frameworks in environmental remediation: proof of concept[J]. Chem Eng J, 2018, 341:262-271. |
26 | WANG X B, XU Z Z, LI L, et al. NO2 removal under ambient conditions by nanoporous multivariate zirconium-based metal-organic framework[J]. ACS Appl Nano Mater, 2020, 3(11):11442-11454. |
27 | KANETI Y V, TANG J, SALUNKHE R R, et al. Nanoarchitectured design of porous materials and nanocomposites from metal-organic frameworks[J]. Adv Mater, 2017, 29(12):1604898-1604937. |
28 | DHAKSHINAMOORTHY A, ASIRI A M, GARCIA H, et al. Metal organic frameworks as versatile hosts of Au nanoparticles in heterogeneous catalysis[J]. ACS Catal, 2017, 7(4): 2896-2919. |
29 | XIA Q, WANG H, HUANG B B, et al. State-of-the-art advances and challenges of iron-based metal organic frameworks from attractive features, synthesis to multifunctional applications[J]. Small, 2019, 15(2): 1803088-1803112. |
30 | CHUGHTAI A H, AHMAD N, YOUNUS H A, et al. Metal-organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations[J]. Chem Soc Rev, 2015, 44(19): 6804-6849. |
31 | BAVYKINA A, KOLOBOV N, KHAN I S, et al. Metal-organic frameworks in heterogeneous catalysis: recent progress, new trends, and future perspectives[J]. Chem Rev, 2020, 120(16): 8468-8535. |
32 | DHAKSHINAMOORTHY A, OPANASENKO M, CEIKA J. Metal organic frameworks as heterogeneous catalysts for the production of fine chemicals[J]. Catal Sci Technol, 2013, 3(10): 2509-2540. |
33 | 曹轩铭, 丛玉凤, 黄玮, 等. 功能性金属有机骨架材料催化应用的研究进展[J]. 化工新型材料, 2022, 50(3):23-34. |
CAO X M, CONG Y F, HUANG W, et al.Research progress on catalytic application of functional MOFs[J]. New Chem Mater, 2022, 50(3):23-34. | |
34 | BAO Z B, CHANG G G, XING H B, et al. Potential of microporous metal-organic frameworks for separation of hydrocarbon mixtures[J]. Energ Environ Sci, 2016, 9(12): 3612-3641. |
35 | ZHANG H B, NAI J W, YU L, et al. Metal-organic-framework-based materials as platforms for renewable energy and environmental applications[J]. Joule, 2017, 1(1): 77-107. |
36 | FU F Y, WANG C L, WANG Q, et al. Highly selective and sharp volcano-type synergistic Ni2Pt@ZiF-8-catalyzed hydrogen evolution from ammonia borane hydrolysis[J]. J Am Chem Soc, 2018, 140(31): 10034-10042. |
37 | ZHU Q L, LI J, XU Q. Immobilizing metal nanoparticles to metal-organic frameworks with size and location control for optimizing catalytic performance[J]. J Am Chem Soc, 2013, 135(28): 10210-10213. |
38 | GAO D D, ZHANG Y H, ZHOU L Q, et al. CuNi NPs supported on MIL-101 as highly active catalysts for the hydrolysis of ammonia borane[J]. Appl Surf Sci, 2018, 427: 114-122. |
39 | LI J, ZHU Q L, XU Q. Highly active AuCo alloy nanoparticles encapsulated in the pores of metal-organic frameworks for hydrolytic dehydrogenation of ammonia borane[J]. Chem Commun, 2014, 50(44): 5899-5901. |
40 | YANG K Z, ZHOU L Q, XIONG X, et al. RuCuCo nanoparticles supported on MIL-101 as a novel highly efficient catalysts for the hydrolysis of ammonia borane[J]. Micro Meso Mater, 2016, 225: 1-8. |
41 | LIANG Z J, XIAO X Z, YU X Y, et al. Non-noble trimetallic Cu-Ni-Co nanoparticles supported on metal-organic frameworks as highly efficient catalysts for hydrolysis of ammonia borane[J]. J Alloys Compd, 2018, 741:501-508. |
42 | CAO N, LIU T, SU J. Ruthenium supported on MIL-101 as an efficient catalyst for hydrogen generation from hydrolysis of amine boranes[J]. New J Chem, 2014, 38(9): 4032. |
43 | LIU P L, GU X J, KANG K, et al. Highly efficient catalytic hydrogen evolution from ammonia borane using the synergistic effect of crystallinity and size of noble-metal-free nanoparticles supported by porous metal-organic frameworks[J]. ACS Appl Mater Inter, 2017, 9(12): 10759-10767. |
44 | LI J, ZHU Q L, XU Q. Non-noble bimetallic CuCo nanoparticles encapsulated in the pores of metal-organic frameworks: synergetic catalysis in the hydrolysis of ammonia borane for hydrogen generation[J]. Catal Sci Technol, 2015, 5(1): 525-530. |
45 | LU D, YU G F, LI Y, et al. RuCo NPs supported on MIL-96(Al) as highly active catalysts for the hydrolysis of ammonia borane[J]. J Alloys Compd, 2017, 694: 662-671. |
46 | WEN L, SU J, WU X J, et al. Ruthenium supported on MIL-96: an efficient catalyst for hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage[J]. Int J Hydrogen Energy, 2019, 39(30): 17129-17135. |
47 | YANG K Z, ZHOU L Q, YU G F, et al. Ru nanoparticles supported on MIL-53(Cr, Al) as efficient catalysts for hydrogen generation from hydrolysis of ammonia borane[J]. Int J Hydrogen Energy, 2016, 41(15): 6300-6309. |
48 | ZHOU Y H, CAO X Y, NING J Z, et al. Pd-doped Cu nanoparticles confined by ZIF-67@ZIF-8 for efficient dehydrogenation of ammonia borane[J]. Int J Hydrogen Energy, 2020, 45(56): 31440-31451. |
49 | FANG M H, WU S Y, CHANG Y H, et al. Mechanistic insight into the synergetic interaction of ammonia borane and water on ZIF-67-derived Co@porous carbon for controlled generation of dihydrogen[J]. ACS Appl Mater Inter, 2021, 13: 47465-47477. |
50 | QU X P, YU Z Q, LI Z P, et al. CoRh nanoparticles supported on ZIF-67 as highly efficient catalysts for hydrolytic dehydrogenation of ammonia boranes for chemical hydrogen storage[J]. Int J Hydrogen Energy, 2021, 42(51):30037-30043. |
51 | WANG W J, LIANG M W, JIANG Y, et al. Nano-Co embedded in porous ZIF-67 polyhedron to catalyze hydrolysis of ammonia borane[J]. Mater Lett, 2021, 293(15): 129702-129705. |
52 | XU W J, LI W, WEN H, et al. Metal/metal-organic framework interfacial ensemble-induced dual site catalysis towards hydrogen generation[J]. Appl Catal B: Environ, 2021, 286: 119946-119953. |
53 | LI P, CHEN R, HUANG Y Q, et al. Activating transition metal via synergistic anomalous phase and doping engineering towards enhanced dehydrogenation of ammonia borane[J]. Appl Catal B: Environ, 2022, 300: 120725-120734. |
54 | ZHANG X L, ZHANG D X, CHANG G G, et al. Bimetallic (Zn/Co) MOFs-derived highly dispersed metallic Co/HPC for completely hydrolytic dehydrogenation of ammonia-borane[J]. Ind Eng Chem Res, 2019, 58(17):7209-7216. |
55 | CHEN Y Z, XU Q, YU S H, et al. Tiny Pd@Co core-shell nanoparticles confined inside a metal-organic framework for highly efficient catalysis[J]. Small, 2015, 11(1): 71-76. |
56 | CHEN Y Z, LIANG L F, YANG Q H, et al. A seed-mediated approach to the general and mild synthesis of non-noble metal nanoparticles stabilized by a metal-organic framework for highly efficient catalysis[J]. Mater Horiz, 2015, 2: 606-612. |
57 | ZACHO S L, MIELBY J, KEGNAES S. Hydrolytic dehydrogenation of ammonia borane over ZIF-67 derived Co nanoparticle catalysts[J]. Catal Sci Technol, 2018, 8(18): 4741-4746. |
58 | ZHAO L Q, WEI Q H, ZHANG L L, et al. NiCo alloy decorated on porous N-doped carbon derived from ZnCo-ZIF as highly efficient and magnetically recyclable catalyst for hydrogen evolution from ammonia borane[J]. Renew Energ, 2021, 173:273-282. |
59 | QU X P, JIANG R, LI Q, et al. Hydrolysis of ammonia borane catalyzed by NiCoP/OPC-300 nanocatalysts: high selectivity and efficiency, and mechanism[J]. Green Chem, 2019, 21: 850-860. |
60 | ZHANG H H, FAN Y P, LIU B Z, et al. Birdcage-type CoOx-carbon catalyst derived from metal-organic frameworks for enhanced hydrogen generation[J]. ACS Sustainable Chem Eng, 2019, 7(11): 9782-9792. |
61 | AIJAZ A, KARKAMKAR A, CHOI Y J, et al. Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal-organic framework: a double solvents approach[J]. J Am Chem Soc, 2012, 134(34): 13926-13929. |
62 | GUAN S Y, LIU Y Y, ZHANG H H, et al. Atomic interface-exciting catalysis on cobalt nitride-oxide for accelerating hydrogen generation[J]. Small, 2022, 18(22): 2107417-2107427. |
63 | XU W J, LIU M, WANG S F, et al. Interfacial ensemble effect of copper nanoparticles and nickel metal-organic framework on promoting hydrogen generation[J]. Int J Hydrogen Energy, 2022, 47(55): 23213-23220. |
64 | DENG J, ZHOU X L, ZOU J D, et al. PdCo alloy supported on a ZIF-derived N-doped carbon hollow polyhedron for dehydrogenation of ammonia borane[J]. ACS Appl Energ Mater, 2022, 5(6): 7408-7419. |
65 | 李想, 张军. 氨硼烷水解制氢催化剂及其限域载体的形貌可控合成研究进展[J]. 材料导报, 2022, 22: 1-14. |
LI X, ZHANG J. Research progress of shape-controlled synthesis of catalysts and supports for ammonia borane dehydrogenation[J]. Mater Reports, 2022, 22: 1-14. | |
66 | LIU Y Y, HAN G S, ZHANG X Y, et al. Co-Co3O4@carbon core-shells derived from metal-organic framework nanocrystals as efficient hydrogen evolution catalysts[J]. Nano Res, 2017, 10(9): 3035-3048. |
67 | NA K, CHOI K M, YAGHI O M, et al. Metal nanocrystals embedded in single nanocrystals of MOFs give unusual selectivity as heterogeneous catalysts[J]. Nano Lett, 2014, 14(10): 5979-5983. |
68 | LUO S H, ZENG Z T, ZENG G M, et al. Metal organic frameworks as robust host of palladium nanoparticles in heterogeneous catalysis: synthesis, application, and prospect[J]. ACS Appl Mater Inter, 2019, 11(36): 32579-32598. |
69 | LIU J H, ZHANG A F, LIU M, et al. Fe-MOF-derived highly active catalysts for carbon dioxide hydrogenation to valuable hydrocarbons[J]. J CO2 Util, 2017, 21: 100-107. |
70 | WANG Q, ASTRUC D. State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis[J]. Chem Rev, 2020, 120(2): 1438-1511. |
71 | 刘军辉, 宋亚坤, 宋春山, 等. 金属-有机骨架衍生催化剂在二氧化碳加氢和费托合成反应中的应用[J]. 应用化学, 2020, 37(10): 1099-1111. |
LIU J H, SONG Y K, SONG C S. Recent advances in application of metal-organic framework-derived catalysts for hydrogenation of carbon dioxide and Fischer-Tropsch synthesis[J].Chin J Appl Chem, 2020, 37(10): 1099-1111. | |
72 | 姚显芳, 李映伟. MOFs作为牺牲模板制备纳米多孔碳材料的方法及其应用[J]. 科学通报, 2015, 60(20): 1906-1914. |
YAO X F, LI Y W. MOFs as sacrificial templates for preparation of nanoporous carbon materials and their applications[J]. Chin Sci Bull, 2015, 60(20): 1906-1914. | |
73 | BURCH H J, BROWN E, CONTERA S A, et al. Effect of acid treatment on the structure and electrical properties of nitrogen-doped multiwalled carbon nanotubes[J]. J Phys Chem C, 2008, 112(6):1908-1912. |
74 | LUO Y S, LUO J S, ZHOU W W, et al. Controlled synthesis of hierarchical graphene-wrapped TiO2@Co3O4 coaxial nanobelt arrays for high-performance lithium storage[J]. J Mater Chem A, 2013, 1(2): 273-281. |
75 | 李红霞, 吴杰, 张庆堂, 等. 金属有机骨架衍生氮掺杂碳材料的制备及其电化学性能研究[J]. 合成化学, 2022, 30(3): 161-166. |
LI H X, WU J, ZHANG Q T, et al.Preparation and electrochemical performance studies of nitrogen-doped carbon materials derived from metal-organic framework[J]. Synth Chem, 2022, 30(3): 161-166. | |
76 | SU Z L, YE G Y, LI S Q, et al. A template-free I2-assisted pyrolysis strategy to synthesize coral-like nitrogen-doped carbon with a regulated hierarchical porous structure toward efficient oxygen reduction[J]. Chem Eng J, 2022, 440:135852-135859. |
77 | ZHAO J, GONG J W, WEI J N, et al. Metal organic framework loaded fluorescent nitrogen-doped carbon nanozyme with light regulating redox ability for detection of ferric ion and glutathione[J]. J Colloid Interface Sci, 2022, 618:11-21. |
78 | WANG Z Z, ZHOU X Z, JIN H H, et al. Ionic liquid-derived FeCo alloys encapsulated in nitrogen-doped carbon framework as advanced bifunctional catalysts for rechargeable Zn-air batteries[J]. J Alloy Compd, 2022, 908:164565-164574. |
79 | HE C Y, TAO J Z. Transition metal carbides coupled with nitrogen-doped carbon as efficient and stable Bi-functional catalysts for oxygen reduction reaction and hydrogen evolution reaction[J]. Int J Hydrogen Energy, 2022, 47(27):13240-13250. |
80 | XUAN C J, HOU B S, XIA W W, et al. From a ZIF-8 polyhedron to three-dimensional nitrogen doped hierarchical porous carbon: an efficient electrocatalyst for the oxygen reduction reaction[J]. J Mater Chem A, 2018, 6(23):10731-10739. |
81 | CHEN Z W, CHEN L X, YANG C C, et al. Atomic (single, double, and triple atoms) catalysis: frontiers, opportunities, and challenges[J]. J Mater Chem A, 2019, 7(8): 3492-3515. |
82 | 张洪威. MOFs衍生的多孔碳复合材料的合成及催化性能[D]. 沈阳: 辽宁大学, 2018. |
ZHANG H W. Synthesis and catalytic properties of porous-derived MOFs-derived carbon composites[D]. Shenyang: Liaoning University, 2018. | |
83 | MEHDI S, LIU Y Y, WEI H J, et al. Co-based nanoparticles fabricated on Ni foams for efficient hydrogen generation from ammonia borane[J]. ACS Appl Nano Mater, 2022, 5: 5064-5074. |
84 | PENG W, YANG X X, MAO L C, et al. ZIF-67-derived Co nanoparticles anchored in N doped hollow carbon nanofibers as bifunctional oxygen electrocatalysts[J]. J Mater Chem A, 2021, 407: 127157-127167. |
85 | XU Q, CHANDRA M. Catalytic activities of non-noble metals for hydrogen generation from aqueous ammonia-borane at room temperature[J]. J Power Sources, 2006, 163(1): 364-370. |
86 | 刘军辉, 郭旭明, 宋亚坤, 等. 催化氨硼烷水解制氢研究进展[J]. 应用化学, 2021, 38(2): 157-169. |
LIU J H, GUO X M, SOMH Y K, et al. Recent advances in hydrogen generation by catalytic hydrolysis of ammonia borane[J]. Chin J Appl Chem, 2021, 38(2): 157-169. |
[1] | 张毅城, 查飞, 唐小华, 常玥, 田海锋, 郭效军. 非均相催化制备有机过氧化物的研究进展[J]. 应用化学, 2023, 40(6): 769-788. |
[2] | 于宜辰, 张雨宸, 张耀远, 吴芹, 史大昕, 陈康成, 黎汉生. 本体金属氧化物在丙烷无氧脱氢中的研究进展[J]. 应用化学, 2023, 40(6): 789-805. |
[3] | 李慧慧, 姚开胜, 赵亚南, 范李娜, 田钰琳, 卢伟伟. 离子液体调控合成Pt-Pd双金属纳米材料及其催化氨硼烷水解释氢[J]. 应用化学, 2023, 40(4): 597-609. |
[4] | 王路飞, 甄蒙蒙, 沈伯雄. 贫电解液下电催化剂对调控锂硫电池性能的研究进展[J]. 应用化学, 2023, 40(2): 188-209. |
[5] | 曹蓉, 夏杰桢, 廖漫华, 赵路超, 赵晨, 吴琪. 单原子催化剂在电化学合成氨中的理论研究进展[J]. 应用化学, 2023, 40(1): 9-23. |
[6] | 张丹, 尚润梅, 赵振涛, 李君华, 邢锦娟. V/Ce-Al2O3催化甲醇选择性氧化制备二甲氧基甲烷[J]. 应用化学, 2022, 39(9): 1429-1436. |
[7] | 王显, 杨小龙, 马荣鹏, 刘长鹏, 葛君杰, 邢巍. 单原子分散的Ir-N-C燃料电池阳极抗中毒催化剂[J]. 应用化学, 2022, 39(8): 1202-1208. |
[8] | 刘也, 郭少波, 梁艳莉, 葛红光, 马剑琪, 刘智峰, 刘波. 核壳型纳米复合材料CuFe2O4@NH2@Pt的制备及催化性能[J]. 应用化学, 2022, 39(8): 1237-1245. |
[9] | 杜卫民, 刘欣, 朱琳, 付佳敏, 郭文山, 杨晓晴, 双培硕. 三元镍基硫属化物纳米棒阵列的简单合成及其高效的电催化析氧性能[J]. 应用化学, 2022, 39(8): 1252-1261. |
[10] | 张超. 单原子催化剂电催化还原二氧化碳研究进展[J]. 应用化学, 2022, 39(6): 871-887. |
[11] | 李世帅, 刘佳奇, 王佳一, 杨江峰. 多级孔Beta沸石合成研究进展[J]. 应用化学, 2022, 39(6): 912-926. |
[12] | 王岩, 张树聪, 汪兴坤, 刘志承, 王焕磊, 黄明华. 电解海水析氢反应过渡金属基催化剂的研究进展[J]. 应用化学, 2022, 39(6): 927-940. |
[13] | 李锋, 路世玉, 张宇, 郭丽君, 翟雪, 李翠勤. 硅烷基Schiff碱共价修饰纳米二氧化硅负载过渡金属催化乙烯齐聚性能[J]. 应用化学, 2022, 39(6): 949-959. |
[14] | 曹维锦, 白璐, 武兰兰, 李敬德, 宋术岩. 多壳层中空镍钴双金属磷化物纳米球用于高效电催化析氧[J]. 应用化学, 2022, 39(4): 666-672. |
[15] | 王雪, 王意波, 王显, 祝建兵, 葛君杰, 刘长鹏, 邢巍. 酸性电解水过程中氧析出反应的机理及铱基催化剂的研究进展[J]. 应用化学, 2022, 39(4): 616-628. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||