应用化学 ›› 2022, Vol. 39 ›› Issue (6): 912-926.DOI: 10.19894/j.issn.1000-0518.210246
收稿日期:
2021-05-18
接受日期:
2021-08-28
出版日期:
2022-06-01
发布日期:
2022-06-27
通讯作者:
杨江峰
基金资助:
Shi-Shuai LI1, Jia-Qi LIU1, Jia-Yi WANG1, Jiang-Feng YANG1,2()
Received:
2021-05-18
Accepted:
2021-08-28
Published:
2022-06-01
Online:
2022-06-27
Contact:
Jiang-Feng YANG
About author:
yangjiangfeng@tyut.edu.cnSupported by:
摘要:
沸石分子筛是许多工业过程中不可缺少的催化剂。其中,Beta沸石因其具有三维大微孔结构而成为生产广泛并且具有重要工业意义的沸石材料之一。与传统微孔Beta沸石相比,多级孔Beta沸石具有更小的空间位阻,更高的传质效率等诸多优点,从而能减少其在作为催化剂时积碳的形成,从而延长催化剂的使用寿命,提高催化剂利用效率。本文以Beta沸石为代表,从“自下而上”(直接合成)和“自上而下”(后期修饰)两种策略详细地介绍了多级孔沸石合成的研究进展,对硬模板剂法、软模板剂法、无介孔模板剂法、脱铝法和脱硅法进行了全面的介绍,并简要介绍了多级孔Beta沸石的特点,最后总结了各种合成方法的优点及存在的问题并对其未来发展前景进行了展望。
中图分类号:
李世帅, 刘佳奇, 王佳一, 杨江峰. 多级孔Beta沸石合成研究进展[J]. 应用化学, 2022, 39(6): 912-926.
Shi-Shuai LI, Jia-Qi LIU, Jia-Yi WANG, Jiang-Feng YANG. Research Progress on Synthesis of Hierarchical Beta Zeolites[J]. Chinese Journal of Applied Chemistry, 2022, 39(6): 912-926.
图1 (A)孔径对大分子(红色)和小分子(黑色)扩散的影响示意图; (B)孔径对分子扩散率(D)和活化能(Ea)对扩散的影响[10]
Fig.1 (A) Schematic representation of the effect of pore size on the diffusion of large (red) and small (black) molecules; (B) Effects of pore diameter on molecular diffusivity (D) and of the energy of activation (Ea) on diffusion[10]
图4 多级孔Beta沸石结晶过程示意图及样品的SEM图像[35]
Fig.4 Schematic representation of crystallization process of hierarchical Beta zeolite and SEM images of the sample[35]
图5 (A)问荆叶子为模板合成的多级孔Beta沸石的SEM图; (B)问荆茎为模板合成的多级孔Beta沸石的SEM图[38]
Fig.5 (A)SEM image of the zeolite Beta replica of a leaf of Equisetum arvense. (B)SEM image of the zeolite Beta replica of a stem of Equisetum arvense[38]
硬模板剂 Hard template agent | 比表面积 SBET/(m2·g-1) | 孔径 Pore size/nm | 参考文献 Ref. |
---|---|---|---|
葡萄糖 Glucose | 465,527 | 30 | [ |
三维有序大孔碳 3Dom | 665~744 | 2~10 | [ |
问荆 Equisetum arvense | 73 | 5~15 | [ |
聚乙烯醇缩丁醛 Polyvinyl butyral | 447 | 4 | [ |
表1 硬模板法合成多级孔Beta沸石
Table 1 Summary of the synthesis of hierarchical beta zeolites by hard template method
硬模板剂 Hard template agent | 比表面积 SBET/(m2·g-1) | 孔径 Pore size/nm | 参考文献 Ref. |
---|---|---|---|
葡萄糖 Glucose | 465,527 | 30 | [ |
三维有序大孔碳 3Dom | 665~744 | 2~10 | [ |
问荆 Equisetum arvense | 73 | 5~15 | [ |
聚乙烯醇缩丁醛 Polyvinyl butyral | 447 | 4 | [ |
图6 在水热条件下由阳离子聚合物与Beta沸石纳米晶体自组装合成多级孔Beta沸石的过程示意图[41]
Fig.6 Proposed route for the synthesis of beta particles from a self-assembly of beta nanocrystals with cationic polymers under hydrothermal condition[41]
图7 (A) 具有可控纳米晶体尺寸的多级孔Beta纳米沸石的形成过程示意图; (B) (a)常规Beta沸石、(b)Beta-S0、(c)Beta-S8、(d)Beta-S16、(e)Beta-S24、(f)Beta-S28、(g)Beta-S36和(h)Beta-S48样品的TEM图[47]
Fig.7 (A) Schematic representation of the formation process of hierarchical beta nanozeolites with controllable nanocrystal size; (B) TEM images of (a)conventional Beta zeolite, (b)Beta-S0, (c)Beta-S8, (d)Beta-S16, (e)Beta-S24, (f)Beta-S28, (g)Beta-S36 and (h)Beta-S48[47]
软模板剂 Soft template agent | 比表面积 SBET/(m2·g-1) | 孔径 Pore size/nm | 参考文献 Ref. |
---|---|---|---|
聚二烯丙基二甲基氯化铵 PDADMAC | 377,443 | 5~40 | [ |
聚二烯丙基二甲基氯化铵 PDADMAC | 473~696 | 20~400 | [ |
聚二烯丙基二甲基氯化铵 PDADMAC | 510~579 | 20~30 | [ |
聚二烯丙基二甲基氯化铵 PDADMAC | 549~721 | 5~55 | [ |
二甲基二烯丙基氯化铵丙烯酰胺共聚物 DMDAAC | 529 | 10~30 | [ |
C18-6-18Br2a | 431~582 | 2.5~3.2 | [ |
3?丙基三甲氧基硅烷 PHAPTMS | 631~798 | 2.8~3.9 | [ |
双离子液体 b DCILs b | 480~685 | 5 | [ |
哌啶类表面活性剂 c Piperidine based surfactants c | 1057 | 2~10 | [ |
Ph(C?N?C6?N?C16)2d | 677 | 3.9 | [ |
Ph(C?N?C6?N?C16)2d | 803 | 2.5~30 | [ |
聚二烯丙基二甲基氯化铵 PDADMA | 693~833 | 4.2~9.5 | [ |
聚二烯丙基二甲基氯化铵 PDADMA | 661~862 | 5~20 | [ |
N2?p?N2e | 646 | 5~15 | [ |
N2?p?N2e | 739 | 3.7 | [ |
表2 软模板法合成多级孔Beta沸石
Table 2 Summary of the synthesis of hierarchical beta zeolite by soft template method
软模板剂 Soft template agent | 比表面积 SBET/(m2·g-1) | 孔径 Pore size/nm | 参考文献 Ref. |
---|---|---|---|
聚二烯丙基二甲基氯化铵 PDADMAC | 377,443 | 5~40 | [ |
聚二烯丙基二甲基氯化铵 PDADMAC | 473~696 | 20~400 | [ |
聚二烯丙基二甲基氯化铵 PDADMAC | 510~579 | 20~30 | [ |
聚二烯丙基二甲基氯化铵 PDADMAC | 549~721 | 5~55 | [ |
二甲基二烯丙基氯化铵丙烯酰胺共聚物 DMDAAC | 529 | 10~30 | [ |
C18-6-18Br2a | 431~582 | 2.5~3.2 | [ |
3?丙基三甲氧基硅烷 PHAPTMS | 631~798 | 2.8~3.9 | [ |
双离子液体 b DCILs b | 480~685 | 5 | [ |
哌啶类表面活性剂 c Piperidine based surfactants c | 1057 | 2~10 | [ |
Ph(C?N?C6?N?C16)2d | 677 | 3.9 | [ |
Ph(C?N?C6?N?C16)2d | 803 | 2.5~30 | [ |
聚二烯丙基二甲基氯化铵 PDADMA | 693~833 | 4.2~9.5 | [ |
聚二烯丙基二甲基氯化铵 PDADMA | 661~862 | 5~20 | [ |
N2?p?N2e | 646 | 5~15 | [ |
N2?p?N2e | 739 | 3.7 | [ |
图9 以四乙基氢氧化铵作为微孔结构导向剂将层状硅酸盐前驱体水热合成为多级孔纳米Beat沸石[62]
Fig.9 Hydrothermal transformation of H-kanemite into hierarchical nanosized Beta zeolite with TEAOH as SDA[62]
合成方法 Synthetic method | 比表面积 SBET/(m2·g-1) | 孔径 Pore size/nm | 参考文献 Ref. |
---|---|---|---|
蒸汽辅助晶化法 SAC | 608 | 4~30 | [ |
蒸汽辅助晶化法 SAC | 692~754 | 2~30 | [ |
层状硅酸盐前驱体 H?kanemite | 643~703 | ≈20 | [ |
柯肯特尔增长 Kirkendall growth a | 15~48 | [ | |
气溶胶辅助合成法 Aerosol?assisted | 447~585 | 2~25 | [ |
表3 无介孔模板直接合成多级孔Beta沸石
Table 3 Summary of the synthesis of hierarchical beta zeolite by template?free method
合成方法 Synthetic method | 比表面积 SBET/(m2·g-1) | 孔径 Pore size/nm | 参考文献 Ref. |
---|---|---|---|
蒸汽辅助晶化法 SAC | 608 | 4~30 | [ |
蒸汽辅助晶化法 SAC | 692~754 | 2~30 | [ |
层状硅酸盐前驱体 H?kanemite | 643~703 | ≈20 | [ |
柯肯特尔增长 Kirkendall growth a | 15~48 | [ | |
气溶胶辅助合成法 Aerosol?assisted | 447~585 | 2~25 | [ |
脱铝溶液 Desilication solvent | 比表面积 SBET/(m2·g-1) | 孔径 Pore size/nm | 参考文献 Ref. |
---|---|---|---|
硝酸 HNO3 | 608 | 4~30 | [ |
硝酸 HNO3 | 511 | 3.4~3.8 | [ |
有机酸 Organic acid | 340~380 | 2~30 | [ |
氟化氢/氟化铵 HF/NH4F | 559~707 | 5 | [ |
表4 脱铝法合成多级孔Beta沸石
Table 4 Summary of the synthesis of hierarchical beta zeolite by dealumination
脱铝溶液 Desilication solvent | 比表面积 SBET/(m2·g-1) | 孔径 Pore size/nm | 参考文献 Ref. |
---|---|---|---|
硝酸 HNO3 | 608 | 4~30 | [ |
硝酸 HNO3 | 511 | 3.4~3.8 | [ |
有机酸 Organic acid | 340~380 | 2~30 | [ |
氟化氢/氟化铵 HF/NH4F | 559~707 | 5 | [ |
脱硅溶液 Desilication solvent | 比表面积 SBET/(m2·g-1) | 孔径 Pore size/nm | 参考文献 Ref. |
---|---|---|---|
氢氧化钠 NaOH | 595~705 | ≈3 | [ |
氢氧化钠 NaOH | 651~653 | [ | |
氢氧化钠 NaOH | 170~630 | 3.4~5.7 | [ |
氢氧化钠/氢氧化铵- NaOH/NH4OH?CTAB | 696~793 | 3~3.2 | [ |
氢氧化钠-四丙基铵阳离子 NaOH?TPA+ | 656~799 | 3.2~5.4 | [ |
表5 脱硅法合成多级孔Beta沸石
Table 5 Summary of the synthesis of hierarchical beta zeolite by desilication
脱硅溶液 Desilication solvent | 比表面积 SBET/(m2·g-1) | 孔径 Pore size/nm | 参考文献 Ref. |
---|---|---|---|
氢氧化钠 NaOH | 595~705 | ≈3 | [ |
氢氧化钠 NaOH | 651~653 | [ | |
氢氧化钠 NaOH | 170~630 | 3.4~5.7 | [ |
氢氧化钠/氢氧化铵- NaOH/NH4OH?CTAB | 696~793 | 3~3.2 | [ |
氢氧化钠-四丙基铵阳离子 NaOH?TPA+ | 656~799 | 3.2~5.4 | [ |
1 | BAERLOCHER C, MCCUSKER L B. Database of zeolite structures. http://www.iza-structure.org/databases/. |
2 | KERR G T. Hydrothermal chemistry of zeolites[M]. Acad Press, 1982: 1-42. |
3 | BARRER R M. Syntheses and reactions of mordenite[J]. J Chem Soc (Resum), 1948: 2158-2163. |
4 | HÖLDERICH W, HESSE M, NÄUMANN F. Zeolites: catalysts for organic syntheses[J]. Angew Chem Int Ed, 1988, 27(2): 226-246. |
5 | YANG J F, ZHAO Q, XU H, et al. Adsorption of CO2, CH4, and N2 on gas diameter grade ion-exchange small pore zeolites[J]. J Chem Eng Data, 2012, 57(12): 3701-3709. |
6 | YANG J F, TANG X, LIU J Q, et al. Down-sizing the crystal size of ZK-5 zeolite for its enhanced CH4 adsorption and CH4/N2 separation performances[J]. Chem Eng J, 2021, 406: 126599. |
7 | TANG X, LIU J Q, SHANG H, et al. Gas diffusion and adsorption capacity enhancement via ultrasonic pretreatment for hydrothermal synthesis of K-KFI zeolite with nano/micro-scale crystals[J]. Micropor Mesopor Mater, 2020, 297: 110036. |
8 | HE C H, KRISHNA R, CHEN Y, et al. Ultrafine tuning of the pore size in zeolite A for efficient propyne removal from propylene[J]. Chinese J Chem Eng, 2021, 37: 217-221. |
9 | RINALDI R, SCHÜTH F. Design of solid catalysts for the conversion of biomass[J]. Energy Environ Sci, 2009: 610-626. |
10 | LI K, VALLA J, GARCIA-MARTINEZ J. Realizing the commercial potential of hierarchical zeolites: new opportunities in catalytic cracking[J]. ChemCatChem, 2014, 45(18): 46-66. |
11 | SCHNEIDER D, MEHLHORN D, ZEIGERMANN P, et al. Transport properties of hierarchical micro‑mesoporous materials[J]. Chem Soc Rev, 2016: 3439-3467. |
12 | COPPENS M, WEISSENBERGER T, ZHANG Q, et al. Hierarchically structured zeolites: nature‑inspired, computer-assisted optimization of hierarchically structured zeolites[J]. Adv Mater Interfaces, 2021, 8(4): 2170018. |
13 | HARTMANN M, THOMMES M, SCHWIEGER W. Hierarchically ordered zeolites: a critical assessment[J]. Adv Mater Interfaces, 2021, 8(4): 2001841. |
14 | QU H, MA Y, LI B, et al. Hierarchical zeolites: synthesis, structural control, and catalytic applications[J]. Emerg Mater, 2020, 3(3): 225-245. |
15 | 李文祎, 孙书红, 刘涛, 等. 多级孔分子筛材料的研究进展[J]. 应用化工, 2020, 343(9): 247-250. |
LI W W, SUN S H, LIU T, et al. Research progress of hierarchical pores zeolite materials[J]. Appl Chem Ind, 2020, 343(9): 247-250. | |
16 | 黄世英, 熊晓云. 多级孔分子筛的合成研究进展[J]. 工业催化, 2019, 27(5): 16-21. |
HUANG S Y, XIONG X Y. Research progress in synthesis of hierarchical molecular sieves[J]. Ind Catal, 2019, 27(5): 16-21. | |
17 | YANG J F, YUAN N, XU M, et al. Enhanced mass transfer on hierarchical porous pure silica zeolite used for gas separation[J]. Micropor Mesopor Mater, 2018, 266: 56-63. |
18 | WANG C, LIU J Q, YANG J F, et al. A crystal seeds-assisted synthesis of microporous and mesoporous silicalite-1 and their CO2/N2/CH4/C2H6 adsorption properties[J]. Micropor Mesopor Mater, 2017, 242: 231-237. |
19 | HIGGINS J B, LAPIERRE R B, SCHLENKER J L, et al. The framework topology of zeolite beta[J]. Zeolites, 1988, 8(6):446-452. |
20 | SHEN J P, MA J, JIANG D Z, et al. Selective synthesis of ethylamine over β zeolite[J]. Catal Lett, 1994, 26(3/4): 291-295. |
21 | 章冠群, 王冬娥, 冯培, 等. 含超微氧化亚钴颗粒Bata分子筛的合成及其催化乙苯氧化性能[J]. 催化学报, 2017, 38(7): 1207-1215. |
ZHANG G Q, WANG D E, FENG P, et al. Synthesis of zeolite beta containing ultra-small CoO particles for ethylbenzene oxidation[J]. Chinese J Catal, 2017, 38(7): 1207-1215. | |
22 | 刘新超, 赵亚榕, 袁珍闫, 等. Ti-Beta分子筛的控制合成及高效催化环己烯环氧化[J]. 高等学校化学学报, 2019, 40(6): 1222-1228. |
LIU X C, ZHAO Y R, YUAN Z Y, et al. Controllable synthesis of Ti-beta zeolite and efficiently catalytic epoxidation of cyclohexene[J]. Chem J Chinese Univ, 2019, 40(6): 1222-1228. | |
23 | KORE R, SRIVASTAVA R, SATPATI B. Synthesis of industrially important aromatic and heterocyclic ketones using hierarchical ZSM-5 and beta zeolites[J]. Appl Catal A:Gen, 2015, 493: 129-141. |
24 | 宗弘元, 高焕新, 魏一伦. 纳米Beta沸石的合成与表征及催化苯和丙烯烷基化性能[J]. 化学反应工程与工艺, 2015, 31(2): 142-149. |
ZHONG H Y, GAO H X, WEI Y L. Synthesis and characterization of nano beta zeolite and its catalytic performance for alkylation of benzene with propylene[J]. Chem React Eng Technol, 2015, 31(2): 142-149. | |
25 | 李贵贤, 孙烈东, 季东, 等. 改性beta分子筛催化苯和甲醇制甲苯反应的研究[J]. 分子催化, 2017, 31(1): 74-81. |
LI G X, SUN L D, JI D, et al. Study on the reaction of benzene and methanol to toluene by modified beta molecular sieve [J]. J Mol Catal, 2017, 31(1): 74-81. | |
26 | MARTÍNEZ C, CORMA A. Inorganic molecular sieves: preparation, modification and industrial application in catalytic processes[J]. Coordin Chem Rev, 2011, 255(13/14): 1558-1580. |
27 | YANG J F, LI J M, WANG W, et al. Adsorption of CO2, CH4, and N2 on 8-, 10-, and 12-membered ring hydrophobic microporous high-silica zeolites: DDR, silicalite-1, and Beta[J]. Ind Eng Chem Res, 2013, 52(50): 17856-17864. |
28 | ZHANG K, OSTRAAT M L. Innovations in hierarchical zeolite synthesis[J]. Catal Today, 2016, 264: 3-15. |
29 | HARTMANN M, MACHOKE A G, SCHWIEGER W. Catalytic test reactions for the evaluation of hierarchical zeolites[J]. Chem Soc Rev, 2016, 45: 3313-3330. |
30 | LINARES M, VARGAS C, GARCIA A, et al. Effect of hierarchical porosity in beta zeolites on the Beckmann rearrangement of oximes[J]. Catal Sci Technol, 2017, 7(1): 181-190. |
31 | ZHUANG W X, LIU X L, CHEN L, et al. One-pot hydrothermal synthesis of ultrafine Pd clusters within beta zeolite for selective oxidation of alcohols[J]. Green Chem, 2020, 22(13): 4199-4209. |
32 | GRECCO S D T F, DE CARVALHO D R, ZANDONAI C H, et al. Catalytic cracking of crude soybean oil on Beta nanozeolites[J]. Mol Catal, 2016, 422: 89-102. |
33 | SONG S, DI L, WU G J, et al. Meso-Zr-Al-beta zeolite as a robust catalyst for cascade reactions in biomass valorization[J]. Appl Catal B:Environ, 2017, 205: 393-403. |
34 | CHEN L H, SUN M H, WANG Z, et al. Hierarchically structured zeolites: from design to application[J]. Chem Rev,2020. 120(20): 11194-294. |
35 | YANG H, YANG P P, LIU X H, et al. Space-confined synthesis of zeolite beta microspheres via steam-assisted crystallization[J]. Chem Eng J, 2016, 299: 112-119. |
36 | CHEN H Y, WYDRA J, ZHANG X Y, et al. Hydrothermal synthesis of zeolites with three-dimensionally ordered mesoporous-imprinted structure[J]. J Am Chem Soc, 2013, 133(32): 12390-12393. |
37 | 马晓宇, 刘婷婷, 崔素萍, 等. 生物质材料的制备及其资源化利用进展[J]. 北京工业大学学报, 2020, 46(10): 1204-1212. |
MA X Y, LIU T T, CUI S P, et al. Research progress on preparation and resource utilization of biomass materials[J]. J Beijing Univ Technol, 2020, 46(10): 1204-1212. | |
38 | VALTCHEV V P, SMAIHI M, FAUST A C, et al. Equisetum arvense templating of zeolite beta macrostructures with hierarchical Porosity[J]. Chem Mater, 2018, 16(7): 1350-1355. |
39 | ZHU H B, LIU Z C, KONG D J, et al. Synthesis and catalytic performances of mesoporous zeolites templated by polyvinyl butyral gel as the mesopore directing agent[J]. J Phys Chem C, 2008, 112(44):17257-17264. |
40 | XIAO F S, WANG L F, YIN C Y, et al. Catalytic properties of hierarchical mesoporous zeolites templated with a mixture of small organic ammonium salts and mesoscale cationic polymers[J]. Angew Chem, 2006, 45(19):3090-3093. |
41 | SONG J W, REN L M, YIN C Y, et al. Stable, Porous, and bulky particles with high external surface and large pore volume from self-assembly of zeolite nanocrystals with cationic polymer[J]. J Phys Chem C, 2008, 112(23): 8609-8613. |
42 | MÖLLER K, YILMAZ B, MÜLLER U, et al. Hierarchical zeolite beta via nanoparticle assembly with a cationic polymer[J]. Chem Mater, 2014, 23(19): 4301-4310. |
43 | YANG H, GUO Q, YANG P, et al. Synthesis of hierarchical Sn-beta zeolite and its catalytic performance in glucose conversion[J]. Catal Today, 2020, 367: 117-123. |
44 | TANG B, LI S, SONG W C, et al. Fabrication of hierarchical Sn-beta zeolite as efficient catalyst for conversion of cellulosic sugar to methyl lactate[J]. ACS Sustainable Chem Eng, 2020, 8: 3796-3808. |
45 | YIN C Y, TIAN D, XU M, et al. One-step synthesis of hierarchical mesoporous zeolite beta microspheres from assembly of nanocrystals[J]. J Colloid Interface Sci, 2013, 397(19): 108-113. |
46 | 田韧, 王诗瑶, 连晨帅, 等. 多级孔Fe-HBeta分子筛的合成及其催化性能探究[J]. 燃料化学学报, 2019, 47(12): 1476-1485. |
TIAN R, WANG S Y, LIAN C S, et al. Synthesis of the hierarchical Fe-substituted porous HBeta zeolite and the exploration of its catalytic performance[J]. J Fuel Chem Technol, 2019, 47(12): 1476-1485. | |
47 | SUN W J, WANG L, ZHANG X W, et al. Controllable synthesis of hierarchical beta nanozeolites from tailorable seeds[J]. Micropor Mesopor Mater, 2015, 201: 219-227. |
48 | GUO W, HUANG L, DENG P, et al. Characterization of beta/MCM-41 composite molecular sieve compared with the mechanical mixture[J]. Micropor Mesopor Mater, 2001, 44/45: 427-434. |
49 | HUANG L M, GUO W P, DENG P, et al. Investigation of synthesizing MCM-41/ZSM-5 composites[J]. J Phys Chem B, 2000, 104(13): 231-237. |
50 | KORE R, SATPATI B, SRIVASTAVA R. Synthesis of dicationic ionic liquids and their application in the preparation of hierarchical zeolite beta[J]. Chem-Eur J, 2015, 17(51): 14360-14365. |
51 | KORE R, SRIDHARKRISHNA R, SRIVASTAVA R. Synthesis of hierarchical beta using piperidine based multi-ammonium surfactants[J]. RSC Adv, 2013, 3(5): 1317-1322. |
52 | LIU B Y, TAN Y Z, REN Y Q, et al. Fabrication of a hierarchically structured beta zeolite by a dual-porogenic surfactant[J]. J Mater Chem, 2012, 22(35): 18631-18638. |
53 | LIU B Y, ZHENG L M, ZHU Z H, et al. Hierarchically structured beta zeolites with intercrystal mesopores and the improved catalytic properties[J]. Appl Catal A:Gen, 2014, 470: 412-419. |
54 | ZHU J, ZHU Y H, ZHU L K, et al. Highly mesoporous single-crystalline zeolite beta synthesized using a nonsurfactant cationic polymer as a dual-function template[J]. J Am Chem Soc, 2014, 136(6): 2503-2510. |
55 | YUAN Y Y, TIAN P, YANG M, et al. Synthesis of hierarchical beta zeolite by using a bifunctional cationic polymer and the improved catalytic performance[J]. Rsc Adv, 2015, 5(13): 9852-9860. |
56 | ZHANG K, LIU Z W, YAN X, et al. In situ assembly of nanoparticles into hierarchical beta zeolite with tailored simple organic molecule[J]. Langmuir, 2017, 33: 14396-14404. |
57 | ZHENG K, LIU B Y, HUANG J J, et al. Cationic surfactant-directed synthesis of hollow beta zeolite with hierarchical structure[J]. Inorg Chem Commun, 2019, 107: 107468. |
58 | 郑家军, 张鸿雁, 潘梦, 等. 汽相转化法制备纳米晶组成的块状ZSM-5多孔沸石[J]. 无机材料学报, 2015, 30(11): 1161-1166. |
ZHENG J J, ZHANG H Y, PAN M, et al. Synthesis of monolith hierachical ZSM-5 zeolite composed of nanocrystals by vapor-phase transformation method[J]. J Inorg Mater, 2015, 30(11): 1161-1166. | |
59 | ZHANG J L, C PENG, YAN H Y, et al. Synthesis of hierarchical zeolite beta with low organic template content via the steam-assisted conversion method[J]. Chem Eng J, 2016, 291: 82-93. |
60 | MÖLLER K, YILMAZ B, JACUBINAS R M, et al. One-step synthesis of hierarchical zeolite beta via network formation of uniform nanocrystals.[J]. J Am Chem Soc, 2011, 133(14): 5284-5295. |
61 | 孙晓勃, 杜艳泽, 秦波, 等.“蒸汽相转化”法制备纳米多级Beta沸石催化材料[J]. 无机材料学报, 2018,33(1): 27-34. |
SUN X B, DU Y Z, QIN B, et al. Hierarchical beta zeolite prepared by steam-assisted conversion method[J]. J Inorg Mater, 2018, 33(1): 27-34. | |
62 | HUANG G, JI P, XU H, et al. Fast synthesis of hierarchical beta zeolites with uniform nanocrystals from layered silicate precursor[J]. Micropor Mesopor Mater, 2017, 248: 30-39. |
63 | CUI Y, YAN Z, LI M, et al. Solvent-free synthesis of all silica beta zeolite in the presence of tetraethylammonium bromide[J]. Crystals, 2018, 8(2): 73. |
64 | CUI T L, LI X H, CHEN J S. Mesoporous TS-1 nanocrystals as low cost and high performance catalysts for epoxidation of styrene [J]. Chinese J Chem, 2017, 35: 577-580. |
65 | TONG M Q, ZHANG D L, FAN W B, et al. Synthesis of chiral polymorph A-enriched zeolite beta with an extremely concentrated fluoride route[J]. Sci Rep, 2014, 5: 11521. |
66 | UENO K, YAMADA S, NEGISHI H, et al. Fabrication of pure-silica *BEA-type zeolite membranes on tubular silica supports coated with dilute synthesis gel via steam-assisted conversion[J]. Sep Purif Technol, 2020, 247: 116934. |
67 | DEBECKER D P, LE BRAS S, BOISSIÈRE C, et al. Aerosol processing: a wind of innovation in the field of advanced heterogeneous catalysts[J]. Chem Soc Rev, 2018, 47(11): 4112-4155. |
68 | XIONG G, FENG M, LIU J, et al. The synthesis of hierarchical high-silica beta zeolites in NaF media[J]. RSC Adv, 2019, 9(7): 3653-3660. |
69 | CUI T L, HE J Y, HU M, et al. Secondary template-free synthesis of hierarchical beta zeolite nanocrystals with tunable porosity and size[J]. Micropor Mesopor Mater, 2020, 309: 110448. |
70 | 刘启予, 范炜.介孔分子筛制备技术新进展——二次合成、超分子自组装和介孔生成剂法[J]. 高等学校化学学报, 2021, 42(1): 60-73. |
LIU Q Y, FAN W. Recent advances in the synthesis of mesoporous zeolites by post-synthetic method, supramolecular self-assembly and mesopore generation agent[J]. Chem J Chinese Univ, 2021, 42(1): 60-73. | |
71 | SAMANTHA B, JEROEN B, FRANK K, et al. Formation of mesopores in zeolite beta by steaming: a secondary pore channel system in the (0 0 1) plane[J]. Micropor Mesopor Mater, 2003, 66: 21-26. |
72 | 翁强, 陈沛, 赵凤起, 等. 多级孔无铝Beta分子筛的合成与表征[J].高等学校化学学报, 2014, 35(2): 215-223. |
WENG Q, CHEN P, ZHAO F Q, et al. Synthesis and characterization of hierarchical aluminum free beta zeolite[J]. Chem J Chinese Univ, 2014, 35(2): 215-223. | |
73 | 王成强, 欧阳颖, 罗一斌. 有机酸脱铝对β分子筛环烷烃开环反应性能的影响[J]. 石油炼制与化工, 2015, 46(6): 30-35. |
WANG C Q, OU Y Y, LUO Y B. Effect of dealumination with organic acid on performance of β zeolite in cycloparaffin ring-opening[J]. Pet Process Petrochem, 2015, 46(6): 30-35. | |
74 | SUÁREZ N, PÉREZ-PARIENTE J, MARQUEZ-ALVAREZ C, et al. Preparation of mesoporous beta zeolite by fluoride treatment in liquid phase. textural, acid and catalytic properties[J]. Micropor Mesopor Mater, 2019, 284: 296-303. |
75 | GROEN J C, ABELLÓ S, VILLAESCUSA L A, et al. Mesoporous beta zeolite obtained by desilication[J]. Micropor Mesopor Mater, 2008, 114(1/2/3): 93-102. |
76 | TIAN F P, YANG X J, SHI Y C, et al. Adsorptive desulfurization over hierarchical beta zeolite by alkaline treatment[J]. J Nat Gas Chem, 2012, 21(6): 647-652. |
77 | TIAN F P, WU Y H, SHEN Q C, et al. Effect of Si/Al ratio on mesopore formation for zeolite beta via NaOH treatment and the catalytic performance in α-pinene isomerization and benzoylation of naphthalene[J]. Micropor Mesopor Mater, 2013, 173: 129-138. |
78 | SUÁREZ N, PÉREZ-PARIENTE J, MONDRAGÓN F, et al. Generation of hierarchical porosity in beta zeolite by post-synthesis treatment with the cetyltrimethylammonium cationic surfactant under alkaline conditions[J]. Micropor Mesopor Mater, 2019, 280: 144-150. |
79 | ZHANG K, FERNANDEZ S, KOBASLIJA S, et al. Optimization of hierarchical structures for beta zeolites by post-synthetic base leaching[J]. Ind Eng Chem Res, 2016, 55(31): 8567-8575. |
[1] | 张毅城, 查飞, 唐小华, 常玥, 田海锋, 郭效军. 非均相催化制备有机过氧化物的研究进展[J]. 应用化学, 2023, 40(6): 769-788. |
[2] | 于宜辰, 张雨宸, 张耀远, 吴芹, 史大昕, 陈康成, 黎汉生. 本体金属氧化物在丙烷无氧脱氢中的研究进展[J]. 应用化学, 2023, 40(6): 789-805. |
[3] | 李冰, 刘军辉, 宋亚坤, 李想, 郭旭明, 熊健. 金属-有机骨架材料在催化氨硼烷水解释氢中的研究进展[J]. 应用化学, 2023, 40(3): 329-340. |
[4] | 王路飞, 甄蒙蒙, 沈伯雄. 贫电解液下电催化剂对调控锂硫电池性能的研究进展[J]. 应用化学, 2023, 40(2): 188-209. |
[5] | 曹蓉, 夏杰桢, 廖漫华, 赵路超, 赵晨, 吴琪. 单原子催化剂在电化学合成氨中的理论研究进展[J]. 应用化学, 2023, 40(1): 9-23. |
[6] | 张丹, 尚润梅, 赵振涛, 李君华, 邢锦娟. V/Ce-Al2O3催化甲醇选择性氧化制备二甲氧基甲烷[J]. 应用化学, 2022, 39(9): 1429-1436. |
[7] | 王显, 杨小龙, 马荣鹏, 刘长鹏, 葛君杰, 邢巍. 单原子分散的Ir-N-C燃料电池阳极抗中毒催化剂[J]. 应用化学, 2022, 39(8): 1202-1208. |
[8] | 刘也, 郭少波, 梁艳莉, 葛红光, 马剑琪, 刘智峰, 刘波. 核壳型纳米复合材料CuFe2O4@NH2@Pt的制备及催化性能[J]. 应用化学, 2022, 39(8): 1237-1245. |
[9] | 张超. 单原子催化剂电催化还原二氧化碳研究进展[J]. 应用化学, 2022, 39(6): 871-887. |
[10] | 王岩, 张树聪, 汪兴坤, 刘志承, 王焕磊, 黄明华. 电解海水析氢反应过渡金属基催化剂的研究进展[J]. 应用化学, 2022, 39(6): 927-940. |
[11] | 李锋, 路世玉, 张宇, 郭丽君, 翟雪, 李翠勤. 硅烷基Schiff碱共价修饰纳米二氧化硅负载过渡金属催化乙烯齐聚性能[J]. 应用化学, 2022, 39(6): 949-959. |
[12] | 曹维锦, 白璐, 武兰兰, 李敬德, 宋术岩. 多壳层中空镍钴双金属磷化物纳米球用于高效电催化析氧[J]. 应用化学, 2022, 39(4): 666-672. |
[13] | 王雪, 王意波, 王显, 祝建兵, 葛君杰, 刘长鹏, 邢巍. 酸性电解水过程中氧析出反应的机理及铱基催化剂的研究进展[J]. 应用化学, 2022, 39(4): 616-628. |
[14] | 徐迪, 戴力, 姚文志, 杨光瑞, 王海荣, 宋鹏飞, 朱岩松. 烯烃聚合催化剂的研究进展[J]. 应用化学, 2022, 39(3): 355-373. |
[15] | 崔博洋, 武宏大, 余宗宝, 耿忠兴, 任铁强, 史春薇, 杨占旭. 磷化钼基催化剂的制备及其电解水中的应用[J]. 应用化学, 2022, 39(3): 439-450. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||