[1] 刘化章, 合成氨工业: 过去、现在和未来—合成氨工业创立100周年回顾、启迪和挑战[J]. 化工进展, 2013, 9(32): 1995-2005. LIU H Z, Ammonia synthesis industry: past, present and future-retrospect, enlightenment and challenge from 100 years of ammonia synthesis industry[J]. Chem Ind Eng Prog, 2013, 9(32): 1995-2005. [2] GUO J, CHANG F, WANG P, et al. Highly active MnN-Li2NH composite catalyst for producing COx-free hydrogen[J]. ACS Catal, 2015, 5(2): 2708-2713. [3] LI J, HUANG H, KOBAYASHI N, et al. Study on using hydrogen and ammonia as fuels: combustion characteristics and NOx formation[J]. Int J Energy Res, 2014, 38(9): 1214-1223. [4] ARMIJO J, PHILIBERT C. Flexible production of green hydrogen and ammonia from variable solar and wind energy: case study of Chile and Argentina[J]. Int J Hydrogen Energy, 2020, 45(3): 1541-1558. [5] 刘化章, 胡樟能, 李小年, 等. FeO基氨合成催化剂[J]. 化工学报, 1994, 47(4): 385-392. LIU H Z, HU Z N, LI X N, et al. FeO-based ammonia synthesis catalyst[J]. CIESC J, 1994, 47(4): 385-392. [6] HARGREAVES J. Nitrides as ammonia synthesis catalysts and as potential nitrogen transfer reagents[J].Appl Petrochem Res, 2014, 4(1): 3-10. [7] GILLAND B. Is a Haber-Bosch world sustainable? population, nutrition, cereals, nitrogen and environment[J]. J Soc Polit Eco Stud, 2014, 39(2): 166-185. [8] RAZON L F. Life cycle znalysis of an alternative to the Haber-Bosch process: non-renewable energy usage and global warming potential of liquid ammonia from cyanobacteria[J]. Environ Prog Sustainable, 2014, 33(2): 618-624. [9] SHAFAIEE S, TOPAL E. When will fossil fuel reserves be diminished[J]. Energ Policy, 2009, 37(1): 181-189. [10] 刘化章. 合成氨工业节能减排的分析[J]. 化工进展, 2011, 30(6): 1147-1157. LIU H Z. Analysis of energy saving and emission reduction in synthetic ammonia industry[J]. Chem Ind Eng Prog, 2011, 30(6): 1147-1157. [11] 刘化章. 氨合成催化剂: 实践与理论[M]. 北京: 化学工业出版社, 2007. LIU H Z. Ammonia synthesis catalyst: practice and theory[M]. Beijing:Chemical Industry Press, 2007. [12] AIKA K I, HORI H, OZAKI A. Activation of nitrogen by alkali metal promoted transition metal I. ammonia synthesis over ruthenium promoted by alkali metal[J]. J Catal, 1972, 27(3): 424-431. [13] VOJVODIC A, MEDFORD A J, STUDT F, et al. Exploring the limits: a low-pressure, low-temperature Haber-Bosch process[J]. Chem Phys Lett, 2014, 45(25): 108-112. [14] ZHANG C, CHEN J, WEN Z. Assessment of policy alternatives and key technologies for energy conservation and water pollution reduction in China's synthetic ammonia industry[J]. J Clean Prod, 2012, 25: 96-105. [15] BARDI U, ASMAR T E, LAVACCHI A. Turning electricity into food: the role of renewable energy in the future of agriculture[J].J Clean Prod, 2013, 53: 224-231. [16] JAFARI R, ASADOLLAHI S, FARZANEH M. Applications of plasma technology in development of superhydrophobic surfaces[J]. Plasma Chem Plasma Process, 2013, 33 (1): 177-200. [17] KIM H H. Nonthermal plasma processing for air-pollution control: a historical review, current issues, and future prospects[J]. Plasma Process Polym, 2004, 1(2): 91-110. [18] MA H, CHEN P, ZHANG M, et al. Study of SO2 removal using non-thermal plasma induced by dielectric barrier discharge (DBD)[J]. Plasma Chem Plasma Process, 2002, 22(2): 239-254. [19] MA H, CHEN P, RUAN R. H2S and NH3 removal by silent discharge plasma and ozone combo-system[J]. Plasma Chem Plasma Process, 2001, 21(4): 611-624. [20] HU J, JIANG N, LI J, et al. Degradation of benzene by bipolar pulsed series surface/packed-bed discharge reactor over MnO2-TiO2/zeolite catalyst[J]. Chem Eng J, 2016, 293: 216-224. [21] RUAN R R, HAN W, NING A, et al. Treatment of odorous and hazardous gases using non-thermal plasma[J]. J Adv Oxid Technol, 1999, 4(3): 328-332. [22] STASIULAITIENE I, MARTUZEVICIUS D, ABROMAITIS V, et al. Comparative life cycle assessment of plasma-based and traditional exhaust gas treatment technologies[J]. J Clean Prod, 2016, 112(2): 1804-1812. [23] PATIL B S, WANG Q, HESSEL V, et al. Plasma N2-fixation: 1900-2014[J]. Catal Today, 2015, 256: 49-66. [24] ZHANG H B, CAO T F, CHENG Y. Synthesis of nanostructured MgO powders with photoluminesce by plasma-intensified pyrohydrolysis process of bischofite from brine[J]. Green Process Synth, 2014, 3(3): 215-222. [25] PETITPAS G, ROLLIER J D, DARMON A, et al. A comparative study of non-thermal plasma assisted reforming technologies[J]. Int J Hydrogen Energy, 2007, 32(14): 2848-2867. [26] MA Y C, HARDING J D, TU X. Catalyst-free low temperature conversion of n-dodecane for co-generation of COx-free hydrogen and C-2 hydrocarbons using a gliding arc plasma[J]. Int J Hydrogen Energy, 2019, 44(48): 26158-26168. [27] LU W, Yang Q, Yan B, et al. Plasma-assisted synthesis of chlorinated polyvinyl chloride (CPVC) characterized by online UV-Vis analysis[J].Chem Eng J, 2012, 207: 923-930. [28] PATIL B, CHERKASOV N, LANG J, et al. Low temperature plasma-catalytic NOx synthesis in a packed DBD reactor: Effect of support materials and supported active metal oxides[J]. Appl Catal B-Environ, 2016, 194: 123-133. [29] HONKALA K, HELLMAN A, REMEDIAKIS I N, et al. Ammonia synthesis from first-principles calculations[J]. Science, 2005, 307 (5709): 555. [30] SUGIYAMA K, AKAZAWA K, OSHIMA M, et al. Ammonia synthesis by means of plasma over MgO catalyst[J]. Plasma Chem Plasma P, 1986, 6(2): 179-193. [31] UYAMA H, NAKAMURA T, TANAKA S, et al. Catalytic effect of iron wires on the syntheses of ammonia and hydrazine in a radio-frequency discharge[J]. Plasma Chem Plasma Process, 1993, 13(1): 117-131. [32] XU W, LI M W, XU G H, et al. Decomposition of CO2 using DC corona discharge at atmospheric pressure[J]. Jpn J Appl Phys, 2004, 43(43): 8310-8311. [33] 鲁娜, 暴晓丁, 商克峰, 等. 电极结构及填充介质对二氧化碳重整甲烷制合成气的影响[J]. 高电压技术, 2018, 44(3): 881-889. LU N, BAO X D, SHANG K F, et al. Effects of electrode structure and packing materials on conversion of methane and carbon dioxide into synthesis gas[J]. High Volt Eng, 2018, 44(3): 881-889. [34] 何欣洁. 高电压技术中的气体放电及其应用探析[J]. 电子测试, 2019, 6(20): 31-32. HE X J. Gas discharge in high-voltage technology and its application[J].Electron Test (China), 2019, 6(20): 31-32. [35] 徐学基, 诸定昌. 气体物理放电[M]. 上海: 复旦大学出版社, 1996. XU X J, ZHU D C. Gas physical discharge[M]. Shanghai: Fudan University Press, 1996. [36] ZHANG H, SANG L, WANG Z, et al. Recent progress on non-thermal plasma technology for high barrier layer fabrication[J].Plasma Sci Technol, 2018, 20(6): 063001. [37] GUO C, TANG F, CHEN J, et al. Development of dielectric barrier discharge ionization [J]. Anal Bioanal Chem, 2015, 407(9): 2345-2364. [38] 白敏冬, 张芝涛, 白希尧, 等. 强电场放电常压合成NH3研究[J]. 大连海事大学学报, 1999, 25: 84-87. BAI M D, ZHANG Z T, BAI X Y, et al. Research on synthesis of NH3 at atmospheric pressure by strong electric field discharge [J]. J Dalian Marit Univ, 1999, 25: 84-87. [39] BAI M D, BAI X Y, ZHANG Z T, et al. Synthesis of ammonia in a strong electric field discharge at ambient pressure[J]. Plasma Chem Plasma Process, 2000, 20: 511-520. [40] GÓMEZ-RAMÍREZ A, COTRINO J, LAMBERT R M, et al. Efficient synthesis of ammonia from N2 and H2 alone in a ferroelectric packed-bed DBD reactor[J]. Plasma Sources Sci Technol, 2015, 24(6): 065011. [41] BAI M D, Zhang Z T, BAI M D, et al. Synthesis of ammonia using CH4/N2 plasmas based on micro-gap discharge under environmentally friendly condition[J]. Plasma Chem Plasma Process, 2008, 28(4): 405-414. [42] XIE D Y, SUN Y, ZHU T L, et al. Ammonia synthesis and by-product formation from H2O, H2, and N2 by dielectric barrier discharge combined with an Ru/Al2O3 catalyst[J]. RSC Adv, 2016, 6(107):105338-105346. [43] YIN K S, VENUGOPALAN M. Effect of electrode material on the synthesis of ammonia[J]. Plasma Chem Plasma Process, 1983, 3(3): 343-350. [44] TANAKA S, UYAMA H, MATSUMOTO O. Synergistic effects of catalysts and plasmas on the synthesis of ammonia and hydrazine[J]. Plasma Chem Plasma Process, 1994, 14(4): 491-504. [45] NAKAJIMA J and Sekiguchi H. Synthesis of ammonia using microwave discharge at atmospheric pressure[J].Thin Solid Films, 2008, 516(13): 4446-4451. [46] WILDFIRE C, ABDELSAYED V, SHEKHAWAT D, et al. Ambient pressure synthesis of ammonia using a microwave reactor[J]. Catal Commun, 2018, 115: 64-67. [47] KAMAEOKA S, KURIYAMA T, KURODA M, et al. The chemical interaction between plasma-excited nitrogen and the surface of titanium dioxide[J].Appl Surf Sci, 1995, 89: 411-415. [48] 赵亚楠. 射频等离子体氨合成及其动力学研究[D] . 重庆: 重庆大学, 2013. ZHAO Y N. Radio-frequency plasma ammonia synthesis and its kinetics[D].Chongqing: Chongqing University, 2013. [49] MIZUSHIMA T, MATSUMOTO K, SUGOH J I, et al. Tubular membrane-like catalyst for reactor with dielectric-barrier-discharge plasma and its performance in ammonia synthesis[J]. Appl Catal A-Gen, 2004, 265(1): 53-59. [50] HAWTOF R, GHOSH S, GUARR E, et al. Catalyst-free, highly selective synthesis of ammonia from nitrogen and water by a plasma electrolytic system[J]. Sci Adv, 2019, 5(1): 5778. [51] KUBOTA Y, KOGA K, OHNO M, et al. Synthesis of ammonia through direct chemical reactions between an atmospheric nitrogen plasma jet and a liquid[J\] .Plasma Fusion Res, 2010, 5: 421-423. [52] PENG P, CHENG Y, HATZENBELLER R, et al. Ru-based multifunctional mesoporous catalyst for low-pressure and non-thermal plasma synthesis of ammonia[J]. Int J Hydrogen Energy, 2017, 42(30): 19056-19066. [53] PENG P, CHEN P, ADDY M, et al. Atmospheric plasma-assisted ammonia synthesis enhancedvia synergistic catalytic absorption[J]. ACS Sustainaable Chem Eng, 2019, 7(1): 100-104. [54] 沈菊李, 刘化章, 李小年, 等. 费-托合成Fe1-xO基熔铁催化剂的研究[J]. 催化学报, 2004, 25(10): 785-788. SHEN J L, LIU H Z, LI X N, et al. Fischer-Tropsch synthesis of Fe1-xO-based molten iron catalyst[J]. Chinese J Catal, 2004, 25(10): 785-788. [55] AIHARA K, AKIYAMA M, DEGUCHI T, et al.Remarkable catalysis of a wool-like copper electrode for NH3 synthesis from N2 and H2 in non-thermal atmospheric plasma[J]. Chem Commun, 2016, 52(93): 13560-13563. [56] IWAMOTO M, AKIYAMA M, AIHARA K, et al. Ammonia synthesis on wool-like Au, Pt, Pd, Ag, or Cuelectrode catalysts in nonthermal atmospheric-pressure plasma of N2 and H2[J]. ACS Catal, 2017, 7(10): 6924-6929. [57] HONG J, ARAMESH M, SHIMONI O, et al. Plasma catalytic synthesis of ammonia using functionalized-carbon coatings in an atmospheric-pressure non-equilibrium discharge[J]. Plasma Chem Plasma Process, 2016, 36(4): 917-940. [58] AKAY G, ZHANG K. Process intensification in ammonia synthesis using novel co-assembled supported micro-porous catalysts promoted by non-thermal plasma[J]. Ind Eng Chem Res, 2017, 56(2): 457-468. [59] SHAH J, WU T, LUCERO J, et al. Nonthermal plasma synthesis of ammonia over Ni-MOF-74[J]. ACS Sustainable Chem Eng, 2019, 7(1): 377-383. [60] HINRICHSEN O, ROSOWSKI F, HOMUNG A, et al. The kinetics of ammonia synthesis over Ru-based catalysts: 1.The dissociative chemisorption and associative desorption of N2[J]. J Catal, 1997, 165(1): 33-44. [61] HESSEL V, CRAVOTTO G, FITZPATRICK P, et al. Industrial applications of plasma, microwave and ultrasound techniques: nitrogen-fixation and hydrogenation reactions[J]. Chem Eng Process, 2013, 71:19-30. [62] BARALDI P T and HESSEL V. Micro reactor and flow chemistry for industrial applications in drug discovery and development[J].Green Process Synth, 2012, 1(2): 149-167. [63] ANASTASOPOULOU A, KEIJZER R, PATIL B, et al.Environmental impact assessment of plasma assisted and conventional ammonia synthesis routes[J]. J Ind Ecol, 2020, 24(5): 1171-1185. [64] 原金海, 仲学军, 谭世语. 射频等离子体氨合成反应器的研究[J]. 化学工业与工程技术, 2008, 29(4): 7-9. YUAN J H, ZHONG X J, TAN S Y. Research on RF plasma ammonia synthesis reactor[J]. Chem Ind Eng T, 2008, 29(4): 7-9. [65] GÓMEZ-RAMÍREZ A, MONTORO-DAMAS A M, COTRINO J, et al. About the enhancement of chemical yield during the atmospheric plasma synthesis of ammonia in a ferroelectric packed bed reactor[J]. Plasma Process Polym, 2016, 9999(6): 1-8. [66] XIE Q L, ZHUGE S Y, SONG X F, et al. Non-thermal atmospheric plasma synthesis of ammonia in a DBD reactor packed with various catalysts[J]. J Phys D: Appl Phys, 2019, 53(6): 064002. [67] WANG Y, CRAVEN M, YU X,et al. Plasma-enhanced catalytic synthesis of ammonia over a Ni/Al2O3 catalyst at near-room temperature: insights into the importance of the catalyst surface on the reaction mechanism[J]. ACS Catal, 2019, 9(12): 10780-10793. [68] KOGELSCHATZ U. Dielectric-barrier discharges: their history, discharge physics, and industrial applications[J]. Plasma Chem Plasma Process, 2003, 23(1): 1-46. [69] MIZUSHIMA T, MATSUMOTO K, OHKITA H, et al. Catalytic effects of metal-loaded membrane-like alumina tubes on ammonia synthesis in atmospheric pressure plasma by dielectric barrier discharge[J]. Plasma Chem Plasma Process, 2007, 27(1): 1-11. [70] PENG P, LI Y, CHENG Y, et al. Atmospheric pressure ammonia synthesis using non-thermal plasma assisted catalysis[J].Plasma Chem Plasma Process, 2016, 36(5): 1201-1210. [71] 诸葛绍渊. 常压介质阻挡放电等离子体协同催化合成氨应用基础研究[D]. 杭州: 浙江工业大学, 2015. ZHUGE S Y. Basic research on application of atmospheric dielectric barrier discharge plasma synergistic catalytic synthesis of ammonia[D].Hangzhou: Zhejiang University of Technology, 2015. [72] KIM H, TERAMOTO Y, OGATA A, et al. Atmospheric-pressure nonthermal plasma synthesis of ammonia over ruthenium catalysts[J]. Plasma Process Polym, 2016, 36(5): 1201-1210. [73] 郑硕. 介质阻挡放电等离子体协同催化合成氨的实验研究[D]. 北京: 北京交通大学, 2019. ZHENG S. Experimental study on synergistic catalytic synthesis of ammonia by dielectric barrier discharge plasma[D]. Beijing: Beijing Jiaotong University, 2019. [74] 宋小芳. 基于活性氧化铝负载催化剂的等离子体催化合成氨研究[D]. 杭州: 浙江工业大学, 2016. SONG X F. Plasma catalytic synthesis of ammonia based on activated alumina supported catalyst[D]. Hangzhou: Zhejiang University of Technology, 2016. [75] IITSUKA Y, YAMAUCHI H, SATO S, et al. Ammonia production from solid urea using non-thermal plasma[J]. IEEE T Ind Appl, 2012, 48(3): 872-877. [76] NEYTS E C, OSTRIKOV K K, SUNKARA M K, et al. Plasma catalysis: synergistic effects at the nanoscale[J]. Chem Rev, 2015, 115(24): 13408-13446. [77] DURME J V, DEWULF J, LEYS C, et al. Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: a review[J]. Appl Catal B-Environ, 2008, 78(3/4): 324-333. [78] BAI M D, ZHANG Z T, BAI X Y, et al. Plasma synthesis of ammonia with a microgap dielectric barrier discharge at ambient pressure[J]. IEEE T Plasma Sci, 2003, 31(6): 1285-1291. [79] EVANS S, UIMAN A. Surface potential studies of alkyl-thiol monolayers adsorbed or gold[J]. Chem Phys Lett, 1990, 170(5): 462-466. [80] HONG J, PRAWER S, MURPHY A B. Production of ammonia by heterogeneous catalysis in a packed-bed dielectric-barrier discharge: influence of argon addition and voltage[J]. IEEE T Plasma Sci, 2014, 42(10):2338-2339. [81] LIU H, LIU C, LI X, et al. Effect of an iron oxide precursor on the H2 desorption performance for an ammonia synthesis catalyst[J]. Ind Eng Chem Res, 2003, 42(7): 1347-1349. [82] HONG J, SERGEY P, TAM E, et al. Kinetic modelling of NH3 production in N2-H2 non-equilibrium atmospheric-pressure plasma catalysis[J]. J Phys D Appl Phys, 2017, 50(15): 154005. |