[1] Resch-Genger U,Grabolle M,Cavalierejaricot S,et al. Quantum Dots versus Organic Dyes as Fluorescent Labels[J]. Nat Methods,2008,5(9):763-775. [2] Sun W,Du Y X,Wang Y Q,et al. Study on Fluorescence Properties of Carbogenic Nanoparticles and Their Application for the Determination of Ferrous Succinate[J]. J Lumin,2010,130(8):1463-1469. [3] Hou J,Zhang F S,Yan X,et al. Sensitive Detection of Biothiols and Histidine Based on the Recovered Fluorescence of the Carbon Quantum Dots-Hg(II) System[J]. Anal Chim Acta,2015,859:72-78. [4] CHE Wangyuan,LIU Changjun,YANG Kun,et al. Research Progress in Preparation, Property and Application of Fluorescent Carbon Dots[J]. Acta Mater Compos Sin,2016,33(3):431-450(in Chinese). 车望远,刘长军,杨焜,等. 荧光碳点的制备和性质及其应用研究进展[J]. 复合材料学报,2016,33(3):431-450. [5] Huang S,Yang E L,Yao J D,et al. Red Emission Nitrogen, Boron, Sulfur Co-doped Carbon Dots for “On-Off-On” Fluorescent Mode Detection of Ag+ Ions and L-Cysteine in Complex Biological Fluids and Living Cells[J]. Anal Chim Acta,2018,1035:192-202. [6] Shi B F,Su Y B, Zhang L L,et al. Nitrogen and Phosphorus Co-doped Carbon Nanodots as a Novel Fluorescent Probe for Highly Sensitive Detection of Fe3+ in Human Serum and Living Cells[J]. ACS Appl Mater Interfaces,2016,8(17):10717-10725. [7] Liu Y,Gong X J,Dong W J,et al. Nitrogen and Phosphorus Dual-doped Carbon Dots as a Label-Free Sensor for Curcumin Determination in Real Sample and Cellular Imaging[J]. Talanta,2018,183:61-69. [8] ZHANG Xiaozhe,ZHANG Wenjun,ZHANG Zhuxing,et al. One Step Preparation of N-Doped Carbon Dots with High Fluorescence Yield for Selective Detection of Mercury Ion[J]. Chinese J Inorg Chem,2015,31(1):1-6(in Chinese). 张筱喆,张文君,张祖星,等. 掺氮高荧光碳点的一步法制备及对痕量Hg(Ⅱ)离子的选择性检测[J]. 无机化学学报,2015,31(1):1-6. [9] Huan Y,Li H,Shuang P,et al. Nitrogen-Doped Fluorescent Carbon Dots for Highly Sensitive and Selective Detection of Tannic Acid[J]. Spectrochim Acta Part A,2019,210:111-119. [10] Yang M M,Li H,Liu J,et al. Convenient and Sensitive Detection of Norfloxacin with Fluorescent Carbon Dots[J]. J Mater Chem B,2014,2(45):7964-7970. [11] Chin N X,Neu H C. Ciprofloxacin, a Quinolone Carboxylic Acid Compound Active Against Aerobic and Anaerobic Bacteria[J]. Antimicrob Agents Chemother,1984,25(3):319-326 [12] Turiel E,Martín-Esteban A,Tadeo J L. Multiresidue Analysis of Quinolones and Fluoroquinolones in Soil by Ultrasonic-Assisted Etraction in Small Columns and HPLC-UV[J]. Anal Chim Acta,2006,562:30-35. [13] Pascual-Reguera M,Parras G P,DíAz A M,et al. Solid-Phase UV Spectrophotometric Method for Determination of Ciprofloxacin[J]. Microchem J,2004,77(1):79-84. [14] Maya M T,Gonçalves N J,Silva N B. Simple High-Performance Liquid Chromatographic Assay for the Determination of Ciprofloxacin in Human Plasma with Ultraviolet Detection[J]. J Chromatogr B,2001,755(1/2):305-309. [15] Hao A J,Guo X J,Wu Q,et al. Exploring the Interactions Between Polyethyleneimine Modified Fluorescent Carbon Dots and Bovine Serum Albumin by Spectroscopic Methods[J]. J Lumin,2016,170:90-96. [16] Baig M M F,Chen Y C. Bright Carbon Dots as Fluorescence Sensing Agents for Bacteria and Curcumin[J]. J Colloid Interface Sci,2017,501:341-349. [17] Kundu A,Nandi S,Das P,et al. Facile and Green Approach to Prepare Fluorescent Carbon Dots:Emergent Nanomaterial for Cell Imaging and Detection of Vitamin B2[J]. J Colloid Interface Sci,2016,468:276-283. [18] LIU Cuige,XU Yizhuang,WEI Yongju,et al. Spectral Properties, Protonation and Fluorescence Quantum Yield of Ciprofloxacin[J]. Spectrosc Spectr Anal,2005,25(9):1446-1450(in Chinese). 刘翠格,徐怡庄,魏永巨,等. 环丙沙星的光谱性质、质子化作用与荧光量子产率[J]. 光谱学与光谱分析,2005,25(9):1446-1450. [19] Hernández M,Aguilar C,Borrull F,et al. Determination of Ciprofloxacin, Enrofloxacin and Flumequine in Pig Plasma Samples by Capillary Isotachophoresis-Capillary Zone Electrophoresis[J]. J Chromatogr B Anal Technol Biomed Life Sci,2002,772(1):163-172. |