[1] | Abbe E. Beitrage zur Theorie des Mikroskops und der Mikroskopischen Wahrnehmung[J]. Arch Mikroskop Anat,1873,9(1):413-420. | [2] | Klein T,Proppert S,Sauer M.Eight Years of Single Molecule Localization Microscopy[J]. Histochem Cell Biol,2014,141(6):561-575. | [3] | Hell S W,Wichmann J.Breaking the Diffraction Resolution Limit by Stimulated Emission:Stimulated Emission Depletion Microscopy[J]. Opt Lett,1994,19(11):780-782. | [4] | Rittweger E,Han K Y,Irvine S E,et al. STED Microscopy Reveals Crystal Colourcentres with Nanometric Resolution[J]. Nat Photonics,2009,3(3):144-147. | [5] | Yang Z,Sharma A,Qi J,et al. Super-Resolution Fluorescent Materials:An Insight into Design and Bioimaging Applications[J]. Chem Soc Rev,2016,45(17):4651-4667. | [6] | Bretschneider S,Eggeling C,Hell S W.Breaking the Diffraction Barrier in Fluorescence Microscopy by Optical Shelving[J]. Phys Rev Lett,2007,98(21):218103. | [7] | Hofmann M,Eggeling C,Jakobs S,et al. Breaking the Diffraction Barrier in Fluorescence Microscopy at Low Light Intensities by Using Reversibly Photoswitchable Proteins[J]. Proc Natl Acad Sci,2005,102((49):17565. | [8] | Gustafsson M G L. Nonlinear Structured-Illumination Microscopy:Wide-Field Fluorescence Imaging with Theoretically Unlimited Resolution[J]. Proc Natl Acad Sci USA,2005,102(37):13081. | [9] | Shroff H,Galbraith C G,Galbraith J A,et al. Live-Cell Photoactivated Localization Microscopy of Nanoscale Adhesion Dynamics[J]. Nat Methods,2008,5(5):417-423. | [10] | Rust M J,Bates M,Zhuang X.Sub-Diffraction-Limit Imaging by Stochastic Optical Reconstruction Microscopy(STORM)[J]. Nat Methods,2006,3(10):793-796. | [11] | Sharonov A,Hochstrasser R M.Wide-Field Subdiffraction Imaging by Accumulated Binding of Diffusing Probes[J]. Proc Natl Acad Sci USA,2006,103(50):18911-18916. | [12] | Heilemann M,van de Linde S,Schüttpelz M,et al. Subdiffraction-Resolution Fluorescence Imaging with Conventional Fluorescent Probes[J]. Angew Chem Int Ed,2008,47(33):6172-6176. | [13] | Dempsey G T,Vaughan J C,Chen K H,et al. Evaluation of Fuorophores for Optimal Performance in Localization-Based Super-Resolution Imaging[J]. Nat Methods,2011,8(12):1027-1040. | [14] | Heilemann M,Margeat E,Kasper R,et al. Carbocyanine Dyes as Efficient Reversible Single-Molecule Optical Switch[J]. J Am Chem Soc,2005,127(11):3801-3806. | [15] | Bates M,Blosser T R,Zhuang X.Short-Range Spectroscopic Ruler Based on a Single-Molecule Optical Switch[J]. Phys Rev Lett,2005,94(10):108101. | [16] | Dempsey G T,Bates M,Kowtoniuk W E,et al. Photoswitching Mechanism of Cyanine Dyes[J]. J Am Chem Soc,2009,131(51):18192-18193. | [17] | Vaughan J C,Dempsey G T,Sun E,et al. Phosphine Quenching of Cyanine Dyes as a Versatile Tool for Fluorescence Microscopy[J]. J Am Chem Soc,2013,135(4):1197-1200. | [18] | Heilemann M,van de Linde S,Mukherjee A,et al. Super-Resolution Imaging with Small Organic Fluorophores[J]. Angew Chem Int Ed,2009,48(37):6903-6908. | [19] | van de Linde S,Sauer M. How to Switch a Fluorophore:From Undesired Blinking to Controlled Photoswitching[J]. Chem Soc Rev,2014,43(4):1076-1087. | [20] | Kottke T,van de Linde S,Sauer M,et al. Identification of the Product of Photoswitching of an Oxazine Fluorophore Using Fourier Transform Infrared Difference Spectroscopy[J]. J Phys Chem Lett,2010,1(21):3156-3159. | [21] | Vaughan J C,Jia S,Zhuang X.Ultrabright Photoactivatable Fluorophores Created by Reductive Caging[J]. Nat Methods,2012,9(12):1181-1184. | [22] | Bates M,Huang B,Dempsey G T,et al. Multicolor Super-Resolution Imaging with Photo-Switchable Fluorescent Probes[J]. Science,2007,317(5845):1749-1753. | [23] | Huang B,Jones S A,Brandenburg B,et al. Whole-Cell 3D STORM Reveals Interactions Between Cellular Structures with Nanometer-Scale Resolution[J]. Nat Methods,2008,5(12):1047-1052. | [24] | Bates M,Dempsey G T,Chen K H,et al. Multicolor Super-Resolution Fluorescence Imaging via Multi-parameter Fluorophore Detection[J]. Chem Phys Chem,2012,13(1):99-107. | [25] | van de Linde S,Endesfelder U,Mukherjee A,et al. Multicolor Photoswitching Microscopy for Subdiffraction-Resolution Fluorescence Imaging[J]. Photobio Sci,2009,8(4):465-469. | [26] | Lehmann M,Gottschalk B,Puchkov D,et al. Multicolor Caged dSTORM Resolves the Ultrastructure of Synaptic Vesicles in the Brain[J]. J Angew Chem Int Ed,2015,54(45):13230-13235. | [27] | Wombacher R,Heidbreder M,van de Linde S,et al. Live-Cell Super-Resolution Imaging with Trimethoprim Conjugates[J]. Nat Methods,2010,7(9):717-719. | [28] | Benke A,Manley S.Live-Cell dSTORM of Cellular DNA Based on Direct DNA Labeling[J]. Chem Bio Chem,2012,13(2):298-301. | [29] | Shim S H,Xia C,Zhong G,et al. Super-resolution Fluorescence Imaging of Organelles in Live Cells with Photoswitchable Membrane Probes[J]. Proc Natl Acad Sci USA,2012,109(35):13978-13983. | [30] | Lukinavicius G,Umezawa K,Olivier N,et al. A Near-Infrared Fluorophore for Live-Cell Super-Resolution Microscopy of Cellular Proteins[J]. Nat Chem,2013,5(2):132-139. | [31] | Uno S,Kamiya M,Yoshihara T,et al. A Spontaneously Blinking Fluorophore Based on Intramolecular Spirocyclization for Live-Cell Super-resolution Imaging[J]. Nat Chem,2014,6(8):681-689. | [32] | Lee H D,Lord S J,Iwanaga S,et al. Superresolution Imaging of Targeted Proteins in Fixed and Living Cells Using Photoactivatable Organic Fluorophores[J]. J Am Chem Soc,2010,132(43):15099-15101. | [33] | F?lling J,Belov V,Kunetsky R,et al. Photochromic Rhodamines Provide Nanoscopy with Optical Sectioning[J]. Angew Chem Int Ed,2007,46(33):6266-6270. | [34] | Huang B,Wang W Q,Bates M,et al. Three-Dimensional Super-resolution Imaging by Stochastic Optical Reconstruction Microscopy[J]. Science,2008,319(5864):810-813. | [35] | Lee M K,Rai P,Williams J,et al. Small-Molecule Labeling of Live Cell Surfaces for Three-Dimensional Super-resolution Microscopy[J]. J Am Chem Soc,2014,136(40):14003-14006. | [36] | Halabi E A,Thiel Z,Trapp N,,et al. A Photoactivatable Probe for Super-resolution Imaging of Enzymatic Activity in Live Cells[J]. J Am Chem Soc. ,2017,139:(37)13200-13207. | [37] | Banala S,Maurel D,Manley S,et al. A Caged, Localizable Rhodamine Derivative for Superresolution Microscopy[J]. ACS Chem Biol,2012,7(2):289-293. | [38] | Grimm J B,Sung A J,Legant W R,et al. Carbofluoresceins and Carborhodamines as Scaffolds for High Contrast Fluorogenic Probes[J]. ACS Chem Biol,2013,8(6):1303-1310. | [39] | Grimm J B,Klein T,Kopek B G,et al. Synthesis of a Far-Red Photoactivatable Silicon-Containing Rhodamine for Super-resolution Microscopy[J]. Angew Chem Int Ed,2016,55(5):1723-1727. | [40] | Nevskyi O,Sysoiev D,Oppermann A,et al. Nanoscopic Visualization of Soft Matter Using Fluorescent Diarylethene Photoswitches[J]. Angew Chem Int Ed,2016,55(41):12698-12702. | [41] | Zhang H,Wang C,Jiang T,et al. Microtubule-Targetable Fluorescent Probe:Site-Specific Detection and Super-Resolution Imaging of Ultrace Tubulin in Microtubules of Living Cancer Cells[J]. Anal Chem,2015,87(10):5216-5222. | [42] | Hua Q,Xin B,Xiong Z,et al. Super-resolution Imaging of Self-assembly of Amphiphilic Photoswitchable Macrocycles[J]. Chem Commun,2017,53(18):2669-2672. | [43] | He H,Ye Z,Xiao Y,et al. Super-Resolution Monitoring of Mitochondrial Dynamics upon Time-Gated Photo-Triggered Release of Nitric Oxide[J]. Anal Chem,2018,90(3):2164-2169. | [44] | Gu X,Zhao E,Zhao T,et al. Mitochondrion-Specific Photoactivatable Fluorescence Turn-On AIE-Based Bioprobe for Localization Super-Resolution Mic/roscope[J]. Adv Mater,2016,28(25):5064-507. |
|