应用化学 ›› 2019, Vol. 36 ›› Issue (3): 269-281.DOI: 10.11944/j.issn.1000-0518.2019.03.180249

• 综合评述 • 上一篇    下一篇

单分子定位超分辨显微成像有机荧光探针的研究进展

潘文慧,李文,屈璟涵,叶懿霈,屈军乐,杨志刚()   

  1. 深圳大学光电工程学院,光电子器件与系统教育部-广东省重点实验室 广东 深圳 518060
  • 收稿日期:2018-07-24 接受日期:2018-10-12 出版日期:2019-03-01 发布日期:2019-02-28
  • 通讯作者: 杨志刚
  • 基金资助:
    国家重点基础研究发展计划(2015CB352005),国家自然科学基金(61525503,61875131,61620106016,81727804)和深圳市基础研究基金(JCYJ20170818100931714)资助

Research Progress on Organic Fluorescent Probes for Single Molecule Localization Microscopy

PAN Wenhui,LI Wen,QU Jinghan,YE Yipei,QU Junle,YANG Zhigang()   

  1. Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province,College of Optoelectronic Engineering,Shenzhen University,Shenzhen,Guangdong 518060,China
  • Received:2018-07-24 Accepted:2018-10-12 Published:2019-03-01 Online:2019-02-28
  • Contact: YANG Zhigang
  • Supported by:
    Supported by the National Basic Research Program of China(No.2015CB352005), the National Natural Science Foundation of China(No.61525503, No.61875131, No.61620106016, No.81727804), the Shenzhen Basic Research Project(No.JCYJ20170818100931714)

摘要:

在生物医学领域,对纳米尺寸级别的微小生物目标进行精确定位研究具有非常重要的意义,而光学显微成像技术为此提供了强有力的工具。 光学显微成像技术受到光学衍射极限的限制,难以分辨尺寸在衍射极限(<200 nm)以下的生物结构,无法直接获取微小生物结构信息,阻碍了生物医学的进一步发展。 近年来,随着纳米分辨显微成像技术的出现,新型荧光探针的开发、成像系统与设备的不断发展及成像算法不断完善地深入结合,促进了光学衍射极限以下尺寸微观目标的研究。 基于单分子定位的超分辨荧光显微成像(SMLM)包括光激活定位成像(PALM)与随机光学重构超分辨成像(STORM),将有机荧光探针与超分辨光学显微成像技术紧密结合在一起,荧光探针的光物理性质直接决定着超分辨成像结果的好坏。 因此,设计不同性能的荧光探针可以实现超精细结构的不同超分辨成像,为研究其生物学功能提供了有力的工具。 本文着重围绕基于SMLM的原理、有机荧光探针的设计要求、用于SMLM的荧光探针种类及其生物应用等方面进行总结综述,指出了单分子定位成像上存在的不足,并对其发展方向进行了展望,希望为对超分辨成像研究感兴趣或初涉该领域的研究者提供成像理论与探针设计方面的帮助。

关键词: 超分辨成像, 单分子定位成像, 荧光探针, 随机光学重构超分辨成像, 光激活定位成像

Abstract:

In the field of biology and biomedical science, it is of significance to image microscopic targets inside cells with high precision to afford accurate information for diagnosis. Since the emergence of optical microscope, it has been used as a powerful tool to provide precise results, achieving the visualization of tiny objects. However, due to the optical diffraction limit(~200 nm), it is difficult to distinguish the objects less than 200 nm in size, in particular, a lot of significant biological targets with size less than 200 nm in cells, which blocks further advancement of biology science. Recently, with the development of fluorescent probes, imaging system and reconstruction algorithm, superresolution imaging microscopy is emerging as an advanced technique capable of overcoming the limit of optical diffraction, which shows potentials in the study of tiny targets below optical diffraction limit. Among superresolution imaging nanoscopies, single molecule localization microscopies(SMLM), such as photo activation localization microscopy(PALM) and stochastically optical reconstruction microscopy(STORM), show typical advantages over other strategies. Smart fluorescent probes play key roles in PALM/STORM microscopy, of which the photophysical properties typically determine the imaging resolution. Therefore, it is of significance to develop fluorescent probes with excellent optical properties to achieve ultrafine structure imaging of interest inside single cell. In this work, we will mainly focus on recent progress on organic probes for single molecule localization microscopy, including working principles, selection criteria, designing strategies of fluorescent probe and their biological applications. Furthermore, we will also cover on the discussion of the shortcomings remaining to be solved in the future and figure out the possible advancement of SMLM to facilitate the researchers who are interested in or initially step into the area of super-resolution imaging microscopy with theoretical assistance.

Key words: super-resolution imaging, single molecular localization microscopy, fluorescent probe, stochastic optical reconstruction microscopy, photoactivated localization microscopy