应用化学 ›› 2016, Vol. 33 ›› Issue (2): 133-143.DOI: 10.11944/j.issn.1000-0518.2016.02.150432

• 综合评述 • 上一篇    下一篇

非均相Fenton催化剂的组成结构设计与性能优化

柴凡凡,李克艳(),郭新闻()   

  1. 大连理工大学化工学院,宾州-大连联合能源研究中心,精细化工国家重点实验室 辽宁 大连 116024
  • 收稿日期:2015-12-04 接受日期:2016-01-11 出版日期:2016-02-01 发布日期:2016-02-01
  • 通讯作者: 李克艳,郭新闻
  • 基金资助:
    国家自然科学基金资助项目(21401017, 21236008)

Composition and Structure Design for High Performance Heterogeneous Fenton Catalysts

CHAI Fanfan,LI Keyan(),GUO Xinwen()   

  1. State Key Laboratory of Fine Chemicals,PSU-DUT Joint Center for Energy Research, School of Chemical Engineering,Dalian University of Technology,Dalian,Liaoning 116024,China
  • Received:2015-12-04 Accepted:2016-01-11 Published:2016-02-01 Online:2016-02-01
  • Contact: LI Keyan,GUO Xinwen
  • Supported by:
    Supported by the National Natural Science Foundation of China(No.21401017, No.21236008)

摘要:

非均相Fenton催化技术解决了均相Fenton反应存在的问题,具有pH适用范围广以及催化剂易于回收利用等优点,因而成为水处理领域的研究热点。本文首先介绍了非均相Fenton反应用于降解有机污染物的发展、反应机理以及机理的研究方法。总结了非均相Fenton催化剂的种类,主要包括铁氧化物、其它金属氧化物、金属有机框架材料。重点讨论了提高非均相Fenton催化剂活性及稳定性的方法,包括通过调控催化剂的形貌、尺寸、孔结构使催化剂具有更高的比表面积,将活性组分负载在具有高比表面积的载体上,通过与其它金属复合以及引入光、超声、微波等外场。最后,对非均相Fenton催化技术的发展进行了展望。

关键词: 非均相Fenton, 催化机理, 有机污染物, 活性, 稳定性

Abstract:

As a solution to overcome the shortcomings of homogeneous Fenton reaction, heterogeneous Fenton catalytic oxidation technology has been intensively investigated in the field of water treatment due to the advantages of high removal efficiency under wide range of pH and easy separation and reutilization. This article firstly introduces the development of heterogeneous Fenton catalytic oxidation technology for the degradation of organic pollutants, the mechanisms of heterogeneous Fenton reaction as well as the characterization and experimental methods to study the mechanisms. The categories of heterogeneous Fenton catalysts are reviewed, including iron oxides, other metal oxides, and metal organic framework materials. Particularly, the methods to improve the catalytic activity and stability of heterogeneous Fenton catalysts are discussed, which include regulating the morphology, size and pore structure of the catalyst to improve the specific surface area, loading the catalysts onto carriers with high specific surface area, compositing the catalysts with other transition metal and introducing the outfield(such as light, ultrasonic and microwave). Finally, the future development of heterogeneous Fenton catalysts is pointed out.

Key words: heterogeneous Fenton, catalytic mechanism, organic pollutants, catalytic activity, catalyst stability