应用化学 ›› 2023, Vol. 40 ›› Issue (6): 904-915.DOI: 10.19894/j.issn.1000-0518.220371
收稿日期:
2022-11-15
接受日期:
2023-05-10
出版日期:
2023-06-01
发布日期:
2023-06-27
通讯作者:
林海彬
作者简介:
第一联系人:共同第一作者
基金资助:
Xing-Mei HU, Jin-Hong ZHANG, Yu-Lin MO, Hai-Bin LIN()
Received:
2022-11-15
Accepted:
2023-05-10
Published:
2023-06-01
Online:
2023-06-27
Contact:
Hai-Bin LIN
About author:
linhb97@mnnu.edu.cnSupported by:
摘要:
从纳米尺度实现分子的逻辑计算与应用是电子微处理器实现小型化的重要环节。本文利用1,3-丙二胺缩二水杨醛SALPHENH2与牛血清白蛋白(BSA)上位点Ⅱ发生相互作用而制备了一种荧光探针复合物BSA@SALPHENH2。实验结果表明,在280 nm激发且Zn2+存在下,BSA@SALPHENH2基于杂化荧光共振能量转移与电子交换能量转移而在350 nm以及426 nm处产生了2个荧光发射峰,然后利用不同的离子作为输入信号对其进行调控,设计了1个半减器和1个含有1个或门(OR gate)、1个与非门(NAND gate)、2个非门(NOT gate)及3个与门(AND gate)的二进制分子逻辑电路。
中图分类号:
胡杏梅, 张锦鸿, 莫玉琳, 林海彬. 基于牛血清白蛋白与席夫碱的组合而构建出双输出分子逻辑电路[J]. 应用化学, 2023, 40(6): 904-915.
Xing-Mei HU, Jin-Hong ZHANG, Yu-Lin MO, Hai-Bin LIN. Designing Dual-output Digital Logic Circuits Based on the Combination of Bovine Serum Albumin and Schiff Base[J]. Chinese Journal of Applied Chemistry, 2023, 40(6): 904-915.
图1 (A) BSA及BSA@SALPHENH2的FT-IR谱; (B) BSA、BSA@SALPHENH2以及SALPHENH2的1H NMR谱图
Fig. 1 (A) FT-IR spectra of BSA and the complex of BSA@SALPHENH2; (B) 1H NMR spectra of BSA, the complex of BSA@SALPHENH2 and SALPHENH2
图2 (A) BSA与不同浓度的SALPHENH2相互作用的Stern-Volmer图; (B) BSA与不同浓度SALPHENH2相互作用的双对数图; BSA与SALPHENH2相互作用的同步荧光光谱 (C) ?λ=15 nm; (D) ?λ=60 nm
Fig.2 Representation of the interaction model with (A) Stern-Volmer plots of BSA interacted with different concentrations of SALPHENH2; (B) Double-logarithm plots of BSA interacted with different concentrations of SALPHENH2; SFS of BSA and the different concentration of SALPHENH2 (C) ?λ=15 nm; (D) ?λ=60 nm
T/K | KSV/(L·mol-1 ) | Kq/(L·mol-1·s-1) | lg Ka | n |
---|---|---|---|---|
308 | 1.08×105 | 1.08×1013 | 4.63 | 0.910 |
313 | 9.93×104 | 9.93×1012 | 4.58 | 0.910 |
318 | 9.47×104 | 9.47×1012 | 4.29 | 0.850 |
表1 BSA与SALPHENH2相互作用的常数
Table 1 Constants of the interaction between BSA and SALPHENH2
T/K | KSV/(L·mol-1 ) | Kq/(L·mol-1·s-1) | lg Ka | n |
---|---|---|---|---|
308 | 1.08×105 | 1.08×1013 | 4.63 | 0.910 |
313 | 9.93×104 | 9.93×1012 | 4.58 | 0.910 |
318 | 9.47×104 | 9.47×1012 | 4.29 | 0.850 |
T/K | |||
---|---|---|---|
308 | -63.9 | -118 | -27.5 |
313 | -63.9 | -118 | -26.9 |
318 | -63.9 | -118 | -26.3 |
表2 BSA与SALPHENH2相互作用的热力学常数
Table 2 Thermodynamic constants of the interaction between BSA and SALPHENH2
T/K | |||
---|---|---|---|
308 | -63.9 | -118 | -27.5 |
313 | -63.9 | -118 | -26.9 |
318 | -63.9 | -118 | -26.3 |
Marker | Blank | WF | IB |
---|---|---|---|
Ka/(L·mol-1) | 4.34×108 | 1.52×108 | 4.43×106 |
表3 BSA@SALPHENH2位点特异性标记实验的结合常数比较
Table 3 Comparison of binding constants in site-specific labeling experiments experiments of BSA@SALPHENH2
Marker | Blank | WF | IB |
---|---|---|---|
Ka/(L·mol-1) | 4.34×108 | 1.52×108 | 4.43×106 |
图3 (A) BSA与SALPHENH2分子对接图; (B) SALPHENH2与BSA中氨基酸残基相互作用的二维平面图; (C) SALPHENH2与色氨酸残基的距离; (D) SALPHENH2与酪氨酸残基的距离
Fig.3 (A) Best conformations for SALPHENH2 docked to BSA in cartoon ribbons; (B) 2 Dimensional representation of amino acid residues surrounding SALPHENH2 in BSA; (C) The distance between SALOPHEN and Tryptophan residues; (D) The distance between SALPHENH2 and Tyrosine residues of BSA
图4 (A) 280 nm激发下,SALPHENH2-Zn2+@BSA的荧光发射光谱; (B) BSA的荧光发射曲线和SALPHENH2-Zn2+的紫外吸收曲线归一化后的重叠谱图; (C)不同pH值下,BSA@SALPHENH2-Zn2+的荧光发射光谱; (D) 376 nm激发波长下,SALPHENH2-Zn2+@BSA的荧光发射光谱
Fig.4 (A) Fluorescence emission spectra of SALPHENH2-Zn2+@BSA at λex=280 nm; (B) Overlap spectra after normalization of the fluorescence emission curve of BSA and the UV absorption curve of SALPHENH2-Zn2+; (C) Fluorescence emission spectra of BSA@SALPHENH2-Zn2+ under different pH; (D) Fluorescence emission spectra of BSA@SALPHENH2-Zn2+ with λex=376 nm
图5 (A)不同金属离子作用下,BSA@SALPHENH2的荧光光谱图; (B) BSA@SALPHENH2体系在350 nm处荧光强度变化; (C)体系在426 nm处荧光强度变化; (D)体系的逻辑电路图
Fig.5 (A) Fluorescence spectra of BSA and SALPHENH2 molecular system under different stimulations; (B) Changes of fluorescence intensity at 350 nm; (C) Changes of fluorescence intensity at 426 nm; (D) Combinational logic circuit equivalent to the BSA and SALPHENH2 molecular systems
Input | Output | ||||
---|---|---|---|---|---|
IN 1 Cu2+ | IN 2 Zn2+ | IN 3 Na2H2EDTA | OUT 1 at 350 nm | OUT 2 at 426 nm | |
a | 0 | 0 | 0 | 1 | 0 |
b | 0 | 0 | 1 | 1 | 0 |
c | 0 | 1 | 0 | 0 | 1 |
d | 0 | 1 | 1 | 1 | 0 |
e | 1 | 0 | 0 | 0 | 0 |
f | 1 | 0 | 1 | 1 | 0 |
g | 1 | 1 | 0 | 0 | 1 |
h | 1 | 1 | 1 | 1 | 0 |
表4 基于BSA@SALPHENH2的单分子电路的真值表
Table 4 Truth table for the mono-molecular circuit based on BSA@ SALPHENH2
Input | Output | ||||
---|---|---|---|---|---|
IN 1 Cu2+ | IN 2 Zn2+ | IN 3 Na2H2EDTA | OUT 1 at 350 nm | OUT 2 at 426 nm | |
a | 0 | 0 | 0 | 1 | 0 |
b | 0 | 0 | 1 | 1 | 0 |
c | 0 | 1 | 0 | 0 | 1 |
d | 0 | 1 | 1 | 1 | 0 |
e | 1 | 0 | 0 | 0 | 0 |
f | 1 | 0 | 1 | 1 | 0 |
g | 1 | 1 | 0 | 0 | 1 |
h | 1 | 1 | 1 | 1 | 0 |
图6 (A)不同pH值作用下,BSA@SALPHENH2-Zn2+的荧光光谱变化; (B) BSA@SALPHENH2-Zn2+体系在350 nm处荧光强度变化; (C)体系在426 nm处荧光强度变化; (D)体系的逻辑电路图
Fig. 6 (A) Fluorescence spectra of BSA@ SALPHENH2-Zn2+ molecular system under different pH; (B) Changes of fluorescence intensity at 350 nm; (C) Changes of fluorescence intensity at 426 nm; (D) Combinational logic circuit equivalent to the BSA@ -SALPHENH2 molecular systems
Input | OUT | |||
---|---|---|---|---|
IN 1 OH- | IN 2 H+ | OUT 1 at 350 nm | OUT 2 at 426 nm | |
a | 0 | 0 | 0 | 0 |
b | 1 | 0 | 0 | 1 |
c | 0 | 1 | 1 | 1 |
d | 1 | 1 | 0 | 0 |
表5 基于BSA@SALPHENH2-Zn2+半减器的真值表
Table 5 Truth table for the molecular logic device half-subtractor based on BSA@SALPHENH2-Zn2+
Input | OUT | |||
---|---|---|---|---|
IN 1 OH- | IN 2 H+ | OUT 1 at 350 nm | OUT 2 at 426 nm | |
a | 0 | 0 | 0 | 0 |
b | 1 | 0 | 0 | 1 |
c | 0 | 1 | 1 | 1 |
d | 1 | 1 | 0 | 0 |
1 | DE SILVA A D, GUNARATNE N H Q, MCCOY C P. A molecular photoionic AND gate based on fluorescent signalling[J]. Nature,1993, 364(6432): 42-44. |
2 | ERBAS-CAKMA S, KOLEMEN S, SEDGWICK A C. Molecular logic gates: the past, present and future[J]. Chem Soc Rev, 2018, 47(7): 2228-2248. |
3 | DE SILVA A P, MCCLENAGHAN N D. Molecular-scale logic gates[J]. Chem Eur J, 2004, 10(3): 574-86. |
4 | WANG H B, MAO A L, TAO B B, et al. Fabrication of multiple molecular logic gates made of fluorescent DNA-templated Au nanoclusters[J]. New J Chem, 2021, 45(9): 4195-4201. |
5 | MARGULIES D, MELMAN G, SHANZER A. A molecular full-adder and full-subtractor, an additional step toward a moleculator[J]. J Am Chem Soc, 2006, 128(14): 4865-4871. |
6 | ZHANG S Q, LI K B, SHI W, et al. Resettable and enzyme-free molecular logic devices for the intelligent amplification detection of multiple miRNAs via catalyzed hairpin assembly[J]. Nanoscale, 2019, 11: 5048-5057. |
7 | HE K Y, YANG H, WANG L, et al. A universal platform for multiple logic operations based on self-assembled a DNA tripod and graphene oxide[J]. Chem Eng J, 2019, 368: 877-883. |
8 | WU Q, WU P M, DUANN H, et al. Quantum dot bead-based immunochromatographic assay for the quantitative detection of triazophos[J]. Food Agr Immunol, 2019, 30(1): 955-967. |
9 | HOSSEIN T, GOHAR D, NARGES M, et al. A reversible and dual responsive sensing approach for determination of ascorbate ion in fruit juice, biological, and pharmaceutical samples by use of available triaryl methane dye and its application to constructing a molecular logic gate and a set/reset memorized device[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2019, 215: 276-289. |
10 | KHATEREH R, HAMID K, SAMIRA G D, et al. Studies on a multifunctional chromo-fluorogenic sensor for dual channel recognition of Zn2+ and CN- ions in aqueous media: mimicking multiple molecular logic gates and memory devices[J]. New J Chem, 2018, 42: 2158-2166. |
11 | 辛涵申, 葛从伍, 傅丽娜, 等. 薁乙炔封端的萘二酰亚胺小分子的设计合成与场效应性能研究[J]. 有机化学, 2017, 37(3): 711-719. |
XIN H S, GE C W, FU L N, et al. Naphthalene diimides endcapped with ethynylazulene: molecular design, synthesis and properties[J]. Chin J Org Chem, 2017, 37(3): 711-719. | |
12 | 王斌, 王晓红, 段莉梅, 等. 基于P2Mo18O626-@Tb3+溶液可逆变色-荧光开关性质对维生素C和H2O2的光谱检测[J]. 高等学校化学学报, 2019, 40(4): 676-684. |
WANG B, WANG X H, DUAN L M, et al. Spectral detection for vitamin C and H2O2 based on the reversible color change and luminescent switching properties of P2Mo18O626-@Tb3+ mixed solution[J]. Chem J Chin Univ, 2019, 40(4): 676-684. | |
13 | 王志强, 肖殷, 金会义, 等. 含三苯胺基团的二噻吩乙烯光致变色化合物的合成及性能研究[J]. 化学学报, 2014, 72(6): 731-738. |
WANG Z Q, XIAO Y, JIN H Y, et al. Synthesis and properties of photochromic dithienylethene compounds with triphenylamine units[J]. Acta Chim Sin, 2014, 72(6): 731-738. | |
14 | JIMENEZ-LOPEZ J, RODRIGUES S S M, RIBEIRO D S M, et al. Exploiting the fluorescence resonance energy transfer (FRET) between CdTe quantum dots and Au nanoparticles for the determination of bioactive thiols[J]. Spectrochim Acta A: Mol Biomol Spectrosc, 2019, 212: 246-254. |
15 | TAHA Z A, AJLOUNI A M, AL-HASSAN K A. Syntheses, characterization, biological activity and fluorescence properties of bis-(salicylaldehyde)-1,3-propylenediimine Schiff base ligand and its lanthanide complexes[J]. Spectrochim Acta A: Mol Biomol Spectrosc, 2011, 81(1): 317-323. |
16 | RAJESWARI, NATCHIMUTHU S, VEMBU B. Pharmacophore and virtual screening of JAK3 inhibitors[J]. Bioinformation, 2014, 10(3): 157-163. |
17 | FAZI R, CRISTINA T, ANNALAURA B, et al. Homology model-based virtual screening for the identification of human helicase DDX3 inhibitors[J]. J Chem Inf Model, 2015, 55(11): 2443-2454. |
18 | 张方圆, 倪永年. 日落黄和β-胡萝卜素与牛血清白蛋白相互作用的对比研究[J]. 化学学报, 2012, 70(12): 1379-1384. |
ZHANG F Y, NI Y N. A comparison study on the interaction of Sunset Yellow and β-carotene with bovine serum albumin[J]. Acta Chim Sin, 2012, 70(12): 1379-1384. | |
19 | YANG Y W, ZHANG N, SUN Y J, et al. Multispectroscopic and molecular modeling studies on the interaction of bile acids with bovine serum albumin (BSA)[J]. J Mol Struct, 2019, 1180: 89-99. |
20 | PENG Q, HUA L, DING X Y, et al. Spectrochim. Influences of urea and guanidine hydrochloride on the interaction of 6-thioguanine with bovine serum albumin[J]. Acta A Mol Biomol Spectrosc, 2009, 74: 1224-1228. |
21 | LIN H B, LIAO Z Q, DAI Y H. Design of multiple efficient molecular logic devices based on molecular systems containing bovine serum albumin and 5-sulfosalicylic acid[J]. Sens Actuators B: Chem, 2018, 273: 672-680. |
22 | ZHANG R J, S B KOU, HU L, et, al. Exploring binding interaction of baricitinib with bovine serum albumin (BSA): multi-spectroscopic approaches combined with theoretical calculation[J]. J Mol Liq, 2022, 354: 1188311. |
23 | 李悦, 谷雨, 何佳, 等. 光谱法与分子模拟技术研究杨梅素与牛血清白蛋白的相互作用[J]. 化学学报, 2012, 70(2): 143-150. |
LI Y, GU Y, HE J, et al. Study on interaction between myricetin and bovine serum albumin by spectroscopy and molecular modeling[J]. Acta Chim Sin, 2012, 70(2): 143-150. | |
24 | BAGALKOTI J T, JOSHI S D, NANDIBEWOOR S T. Spectral and molecular modelling studies of sulfadoxine interaction with bovine serum albumin[J]. J Photoch Photobio A, 2019, 382: 1118711. |
25 | ROSTAMNEZHAD F, HOSSEIN F M. Comprehensive investigation of binding of some polycyclic aromatic hydrocarbons with bovine serum albumin: spectroscopic and molecular docking studies[J]. Bioorg Chem, 2022, 120: 1056561. |
26 | ROSS P D, SUBRAMANIAN S. Thermodynamics of protein association reactions: forces contributing to stability[J]. Biochemistry-US, 1981, 20(11): 3096-3102. |
27 | GAN N, SUN Q M, TANG P X, et al. Determination of interactions between human serum albumin and niraparib through multi-spectroscopic and computational methods[J]. Spectrochim Act A Mol Biomol Spectrosc,2019, 206: 126-134. |
28 | NI Y, ZHU R, KOKOT S. Competitive binding of small molecules with biopolymers: a fluorescence spectroscopy and chemometrics study of the interaction of aspirin and ibuprofen with BSA[J]. Analyst, 2011, 136(22): 4794-4801. |
29 | NI Y, SU S, KOKOT S. Spectrofluorimetric studies on the binding of salicylic acid to bovine serum albumin using warfarin and ibuprofen as site markers with the aid of parallel factor analysis[J]. Anal Chim Acta, 2006, 580(2): 206-215. |
30 | SEN P, FATIMA S, AHMAD B. Interactions of thioflavin T with serum albumins: spectroscopic analyses[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2009, 74(1): 94-99. |
31 | ABDELHAMEED A S, ALANAZI A M, BAKHEIT A H. Fluorescence spectroscopic and molecular docking studies of the binding interaction between the new anaplastic lymphoma kinase inhibitor crizotinib and bovine serum albumin[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2017, 171: 174-182. |
32 | WU L, HUANG C, EMERY B P. Förster resonance energy transfer (FRET)-based small-molecule sensors and imaging agents[J]. Chem Soc Rev,2020, 49(15): 5110-5139. |
33 | MENG D, ZHOU H, XU J. Studies on the interaction of salicylic acid and its monohydroxy substituted derivatives with bovine serum albumin[J]. Chem Phys, 2021, 546:1111821. |
34 | STAROSTA R, SANTOS F C, RFMD A. Human and bovine serum albumin time-resolved fluorescence: tryptophan and tyrosine contributions, effect of DMSO and rotational diffusion[J]. J Mol Struct, 2020, 1221: 1288051. |
35 | JUN S, TONG N, LIU X Q, et al. Mechanochromism, thermochromism, protonation effect and discrimination of CHCl3 from organic solvents in a Et2N-substituted Salicylaldehyde Schiff base[J]. Dyes Pigm, 2021, 195: 1097081. |
36 | LI K, FENG Q, NIU G. Benzothiazole-based AIEgen with tunable excited-state intramolecular proton transfer and restricted intramolecular rotation processes for highly sensitive physiological pH sensing[J]. ACS Sens, 2018, 3(5): 920-928. |
[1] | 于红丽, 周思仪, 洪琛, 罗稳. 基于黄酮骨架的“关-开”型荧光探针用于检测活细胞内丁酰胆碱酯酶[J]. 应用化学, 2023, 40(4): 500-508. |
[2] | 张月霞, 范小鹏, 曹宇娟, 杨欣彤, 李忠平, 杨振华, 董川. 热解法制备油溶性碳量子点用于土霉素的检测[J]. 应用化学, 2023, 40(4): 509-517. |
[3] | 吴蕾, 李凌云, 彭永臻. 基于全反射X射线荧光光谱测定污水痕量重金属元素[J]. 应用化学, 2023, 40(3): 404-412. |
[4] | 耿佳美, 马素芳, 刘文, 刁海鹏, 武志芳, 李思进. 肝靶向荧光探针用于HepG2细胞中ONOO-的特异性检测[J]. 应用化学, 2023, 40(3): 441-448. |
[5] | 徐凤州, 唐华英, 刘吴荟, 江怡凤, 李文凯, 陆献海. 水体中铜离子的现场可视化半定量快速检测[J]. 应用化学, 2022, 39(8): 1303-1311. |
[6] | 薛晨怡, 刘林佳, 王婷, 宫磊, 金龙, 韩建刚, 李胎花. 荧光法检测重金属铅离子的研究进展[J]. 应用化学, 2022, 39(7): 1039-1051. |
[7] | 齐海燕, 张琛琪, 李金龙, 李军. 氮硫掺杂碳点的制备及检测铜离子[J]. 应用化学, 2022, 39(6): 980-989. |
[8] | 薛松松, 解正峰, 何佳伟, 张天怡, 夏保平, 李雨芹. 高选择性快速识别汞(Ⅱ)离子的磺酰腙型探针的合成及在吸附中的应用[J]. 应用化学, 2022, 39(5): 760-768. |
[9] | 张松涛, 王樱蕙, 张洪杰. Nd3+离子敏化的荧光纳米探针用于近红外二区血管成像[J]. 应用化学, 2022, 39(4): 685-693. |
[10] | 黄蕊, 叶长青, 李亚军, 邱盟峯, 李达谅, 鲍红丽. 线粒体靶向的近红外HClO/ClO-荧光探针的研究进展[J]. 应用化学, 2022, 39(3): 407-424. |
[11] | 张成路, 王一鸣, 任芷漩, 李露, 李雨晴, 宋府璐. 以苯并咪唑萘酰亚胺为荧光团高选择快速检测H2S的荧光探针[J]. 应用化学, 2022, 39(3): 489-497. |
[12] | 于思为, 王良鹏, 金日哲, 康传清. 氧杂蒽类荧光探针对ClO-的识别和细胞成像应用[J]. 应用化学, 2022, 39(12): 1903-1911. |
[13] | 宋金萍, 马琦, 梁晓敏, 尚建鹏, 董川. 高荧光量子产率钕、氮双掺杂碳点用于柳氮磺吡啶检测及Hela细胞成像[J]. 应用化学, 2022, 39(11): 1726-1734. |
[14] | 张成路, 暴金迪, 于丰铭, 董文静, 张洋, 宫荣庆, 张彦朋, 张璐. 以喹唑啉酮为核心高选择高灵敏识别次氯酸根离子的荧光探针的合成及应用[J]. 应用化学, 2021, 38(8): 986-994. |
[15] | 邓培渊, 袁伟, 李长看, 陈龙欣, 杨莹莹. 防腐剂苯甲酸与人血清白蛋白相互作用[J]. 应用化学, 2021, 38(8): 1014-1021. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||